時間:2023-12-31 10:54:46
序論:寫作是一種深度的自我表達。它要求我們深入探索自己的思想和情感,挖掘那些隱藏在內心深處的真相,好投稿為您帶來了七篇生物質能源分析范文,愿它們成為您寫作過程中的靈感催化劑,助力您的創作。
[關鍵詞]生物質能;產業化發展;可再生
[DOI]1013939/jcnkizgsc201716074
1前言
以化石燃料為主的能源結構不僅具有不可持續性,且對生態環境造成極大的壓力,因此尋求能源多元化和發展可再生清潔能源已成為大勢所趨。20世紀末以來,歐美等國紛紛采取財政補貼、稅收優惠、農戶補助等激勵政策,引導生物質能產業化發展。已取得了一定的成效。(車長波、袁際華,2011)2000―2005年全球生物乙醇產量翻了一倍多,生物柴油翻了幾乎兩番,而同期全球石油生產只增加了7%。(Worldwatch Institute,2006)。經濟合作與發展組織和聯合國糧食與農業組織共同的《2013―2022年農業展望》曾預測:到2022年生物柴油的比例將占歐盟能源的45%,而燃料乙醇的比例也將占據美國能源的48%。
囿于技術等各方面的原因,中國生物質產業發展相對滯后。在第一代生物質能生產中,國際上成功案例主要以玉米、小麥、糖料和各種油籽等能源作物的規模種植作為生物質能產業化的基礎,此種模式與中國“人多地少”的現狀形成沖突,較難在中國復制。第二代生物質能技術,利用木質廢料、作物秸稈及農產品廢棄物等纖維素為原料生產乙醇,弱化了食品和燃料之間的競爭。這使中國在生物質能產業化進程中不再望“原料”興嘆,而是獲得了變廢為寶的機會。中國在“十二五”規劃中都將生物質能產業作為戰略新興產業來培育和發展。生物質能產業化發展需要將國外的成功經驗與中國的國情相結合,走一條因地制宜的新路。本文試圖對生物質能產業發展的社會經濟影響,制約生物質能產業發展的影響因素以及政策規制等方面進行綜述。
2國外相關研究現狀
21關于生物質能產業的利弊
Von Braun(2006)認為生物質能產業可能帶來四個方面的影響:一是環境效應,比如二氧化碳排放量減少,防止破壞生物多樣性、減少因化肥與農藥的過度使用造成的土壤退化、減少大氣污染等;二是生物質能產品逆向傳導生物質原材料的供求,而對食品、飼料供求和糧食安全造成影響;三是生物質能作為傳統能源的替代,δ茉詞諧〉撓跋歟凰氖巧物質能產業化發展對不同區域及不同收入人群將造成直接或間接的影響。總之生物質能的發展有利有弊。
Danniel GDe La Torre Ugart、Burton English等(2006)認為生物能源可起到緩解能源壓力和減少貧困人口,促進經濟發展等作用。在發展中國家,農業多為勞動密集性產業,生物能源的發展將促進農產品供需,推動農村人口就業,增加收入。Danniel通過實證分析,當生物質能產業化發展,生物乙醇產量達到60億加侖/年和生物柴油16億加侖/年時,可以不用休耕地。預測2007―2030年生物能源產業化生產將累積創造收入210億美元,創造240萬個工作崗位。
另一些學者則認為生物質能的發展將對發展中國家的食物安全造成極大威脅。生物質能的發展使大量的糧食轉化為燃料、將生產糧食的農地用于能源作物的生產,將大量減少糧食供給,從而推動糧食及飼料的價格上漲(Brown 1980)。能源與農業間的關系隨著生物燃料發展而變得更為緊密(von braun 2008)。
De La Torre Ugarte利用POLYSYS系統,研究了在兩種假設的價格方案下能源作物的生產對美國農業部門(包括農地的利用、傳統作物的價格及農場主的收入)的影響。Babcock(2007)認為發展生物燃油,必須先考慮其對環境以及農業的影響,特別是對于農作物和畜產品的影響。
以上結論表明,發展生物質能產業須進行模式選擇,充分考慮新興產業發展對各方面的影響,包括環境、農業及農民收入、糧食價格等。
22生物質能產業發展影響因素研究
RJHooper和JLiEGKoukios(2003)站在投資者立場進行分析,認為決定生物質能產業投資的主要因素來自于市場和政策。生物質能的價格、技術是否能與現存能源供給結構相兼容是企業首先要考慮的。制約生物質能產業發展的因素包括:生產成本高但售價低、生物質能產品市場風險難以測算、企業應對市場風險及政策風險的能力不足、生物質能對環境的影響不確定。
Tomas Kaberger和Kes McCormick(2007)對歐盟的相關能源政策進行對比分析,肯定了政策是促進生物質能產業發展的關鍵因素。
Hillring(2002)提出對生物質能產業發展方向的調控,應從新能源產品提供、能源消費結構調整及相關產業配套等方面著手。其總結瑞典生物質能利用經驗并提出:小生態公司將具有發展優勢,公司實現一體化經營。
23生物質能產業政策研究
政策在生物質能產業發展中占據重要位置,國外學者多用模型模擬政策沖擊,分析不同的生物質能激勵政策對相關產業、產品以及對環境或社會福利的影響。
Kanes等(2007)利用CGE模型評價了波蘭不同生物質能激勵政策的成效:相較于直接對生物能源補貼,提高化石能源稅顯得更有效率;生物質能部門受益更多的是間接稅的減免。
Ray(2000)通過運用POLYSYS模型模擬了相關農業政策對生物質能產業發展的可能影響。該模型測度了潛在的生物質能源和生物柴油供給量,并指出要充分將農業部門與環境、區域經濟和相關產業聯系起來,以促進生物質能產業的發展。
Johansson(2007)的研究表明,沒有政策限制,農民將優先使用農用地種植能源作物,這樣會進一步加劇糧食作物與能源作物在土地利用上的競爭。其運用LUCEA模型模擬了嚴格的二氧化碳減排政策對糧食、土地價格和溫室氣體減排的影響。結果表明:隨著碳稅提高,生物能源的供給量將會隨之提高,且生物質能原料主要來源于林木剩余物,糧食價格比基準價格上漲兩倍,二氧化碳排放量至2100年接近零。
Ignaciuk等(2006)在模型中選擇六部門進行局部均衡分析:其中包括糧食作物馬鈴薯、谷物;能源作物大麻、柳樹;傳統電力部門及生物電力部門。探討不同的能源稅收和補貼政策對碳排放、相關農產品產量和價格、生物能源產量及價格的影響。結果表明:對傳統電力征收10%的稅,對生物電力實行25%的補貼,將使生物電力的份額增加到75%,生物質和農產品產量增加。增收的碳稅補償環境,此外碳稅還將導致農產品產量降低1%~4%。
Gohin利用開放的CGE模型評估歐洲生物能源政策對農業部門影響。結果表明:在歐盟的能源政策下,可通過進口滿足生物柴油的需求,在巨額的進口關稅下,生物乙醇產量大增,能滿足國內需求。同時生物能源的大規模生產將導致國內畜禽類產品價格下降,產量增加。政府需補貼105億歐元,其中國外生產者獲益48億歐元,國內食品工業獲益25億歐元,農民收入增加32億歐元,并可提供四萬個農業就業機會。
3國內相關研究
31中國生物質能產業發展的制約因素
石元春(2011)提出降低生產成本是我國發展生物質能最需要解決的問題,其次是技術標準問題,對于生物質成型燃料,需要有相應的技術標準和規范,使之發展成為一種通用燃料。
王應寬(2007)分析了產業化發展空間,并總結了中國生物質能的產業化途徑。從生物質資源潛力、產品成本、環保效應等方面分析了我國生物質能產業的發展前景。其認為生物質能產業化開發的核心動力還是技術創新。生物質能產業化發展需要克服生物質原料極其分散,運輸成本、生產成本、采集成本高等制約因素。
通過研究生物質能商業化途徑,提出了生物質能產業的四大支撐體系,即政策扶持體系、資金投入體系、市場保障支撐、技術支撐保障體系,對生物質能源產業的發展提出了相應的對策措施(王雅鵬等,2007)。
吳創之等(2007)提出生物質能循環系統研究平臺的建設是生物質能產業發展的必要條件。
孫振鈞(2004)綜述了國內外生物質能產業發展的4個取向:生物質發電、生物質液體燃料、生物質有機高分子材料和能源農林業。認為生物質能產業發展方向應該與振興農村經濟和改善農民生活相結合,向小型、分散、統分結合的模式發展。能源農業應該與新興能源工業有機結合,使之形成生物質能產業鏈。
趙振宇等(2012)提出生物質發電行業的主要威脅在于上下游相關配套產業不協調、缺乏配額制、發展風險難評估等因素。
32生物質能產業政策影響及規制
劉飛翔(2011)在其博士論文中構建了四個層次的生物質能源政策永續發展評價指標體系。包括1個一級指標(生物質能源政策永m性發展)、4個二級指標(生物質能決策系統科學性、生物質能供給系統穩定性、生物質能消費系統持續性、生物質能科技研發與教育)、8個三級指標、22個四級指標構成的評價體系。通過專家問卷法確定各指標權重值,選用綜合評分法評價生物質能產業發展中政府規制與激勵價福建生物質能政策整體績效。此外從市場機制中生物質產業組織方式、市場準入制度、價格激勵性管制、社會性管制四個領域展開政府規制與激勵的主要工具選擇研究,提出生物質產業激勵的方向、手段和領域。
胡應得等(2011)利用CGE模型模擬征收能源稅對生物質能產業及宏觀經濟的影響。結果表明,對能源產品征收150元/噸標煤的能源稅,從量稅轉換為從價稅后,煤炭、石油、天然氣的稅率分別為25%、85%和9%,生物質能占比上升了0082%,而GDP、投資和出口等指標都有不同幅度的下降。
吳永民通過構建CGE模型分析了財政政策對于燃料乙醇產業發展的影響。結果表明:在非糧種植業階段和生產階段給予財政補貼都會促進燃料乙醇產量和乙醇汽油產量增長,在生產階段進行補貼會引起農村和城鎮居民收入的小幅減少,而非糧種植業階段的補貼能夠提高農民的收入。
綜上所述,生物質能產業作為新興產業,政府的扶持和引導意義重大。但政策選擇需依托于國情,完全照搬國外條條框框很可能出現“水土不服”。建立中國特色生物質能產業良性發展的政策激勵和規制才是長久之策。
參考文獻:
[1]胡應得,楊增旭,程志光能源稅對我國生物質能產業發展的激勵效用研究[J].經濟論壇,2011(9):111-115.
[2]王雅鵬,王宇波,丁文斌生物質能源開發利用及其支撐體系建設的思考[J].農業現代化研究,2007,28(6):753-756.
[3]石元春決勝生物質[M].北京:中國農業大學出版社,2011:65-68.
關鍵詞:生物質能源;產業;技術
中圖分類號:F062.2 文獻標識碼:B 文章編號:1006-3544(2011)02-0058-02
生物質是指通過光合作用形成的各種有機體,包括所有的動植物和微生物。生物質能源是太陽能以化學形式儲存在生物質中的能量形式,即以生物質為載體的能量,是一種可再生能源。根據其來源不同,可分為林業資源、農業資源、生活污水和工業有機廢水、城市固體廢物及畜禽糞便等五大類。而農村生物質能源主要是指利用農作物秸稈、甘蔗、玉米、小麥、甜菜、木薯、馬鈴薯、棉籽、菜籽、林灌木等農林產品,以及畜牧業生產廢棄物等提取的能源。農村生物質能源的發展,有利于增加農民的就業機會,提高農民的收入,改善農村的生態環境,促進農村經濟的可持續發展。且農村生物質能源的發展本著“不與人爭糧,不與糧爭地”的原則,與糧食的安全保障并不沖突。同時,農村生物質能源企業和產業集群的發展,也是加速農業產業化和農村城鎮化的有效途徑。
一、河北省農村生物質能源發展的現狀
河北省是農業大省,具有較為豐富的農業生物質能可利用資源,而且農村生物質能源產業發展也正在有序推進。晉州、威縣、成安三個秸稈直燃發電廠投產運行,總裝機容量72萬千瓦;涿鹿、館陶、吳橋等6個項目開工建設,總裝機容量224萬千瓦;至今已累計建成沼氣池274萬戶,普及率達18%;建設大中沼氣工程1453處,年產氣量1743萬立方米。
河北省新能源產業“十二五”發展規劃的發展方向和目標之一就是生物質能開發利用工程,其中涉及農村生物質能開發利用的,主要體現在四個方面:(1)以秸稈剩余量較大的糧棉主產區為重點,適度建設生物質直燃發電廠;(2)大力推進農村生物質清潔利用,普及農村戶用沼氣,在大型養殖場建設大中型沼氣工程,支持生物質成型燃料產業化,推廣以生物質為主要燃料的節能爐具,推進綠色能源示范縣鄉建設;(3)到2015年,農村沼氣利用達到350萬戶,建成大中型沼氣工程2500處、沼氣發電站10座,推廣秸稈壓塊炊事采暖爐具30萬戶;(4)利用貧瘠土地,規劃建設以甜高粱等作物為主的燃料乙醇原料種植基地,積極推進衡水、平泉燃料乙醇項目前期工作。
二、河北省農村生物質能源發展的瓶頸
1.對農村生物質能源的發展存在認識障礙。首先,公眾對發展農村生物質能源的認識不足,在農村未形成農民積極參與和支持生物質能源發展的局面,農民對廢棄秸稈直接燃燒處理的現象仍很普遍。其次,某些地方政府對發展生物質能亦缺乏系統認識、重視不夠,缺乏詳細的可行性研究,未對生物質能資源在本地區的分布、開發潛力以及技術、環境、障礙等做出詳細評估,不利于生物質能在本地區的推廣和利用。
2.發展農村生物質能源存在技術障礙。目前制約河北省農村生物質能源發展的主要障礙仍是技術難題,與該產業有關的核心技術的自主知識產權較少,未實現技術突破。由于生物質能源加工利用技術集成化和成熟度不高,導致生物質轉化和加工效率較低,從而難以實現規?;a。設立的生物質能源工程項目中所需的大型精密設備主要依賴于進口,國產化水平不高。
3.發展農村生物質能源的成本較高,存在市場障礙。由于河北省農村生物質能源的開發利用仍處于初級階段,與傳統能源相比,其前期投入成本較高、風險較大,產業的規模化程度不高,導致生物質能源的運營成本較高。再者,生物質資源分布相對分散,收集的成本也較高,又追加了發展生物質能源的成本。同時,農村的能源消費仍以傳統能源為主,生物質能源占能源消費比重很低,生物質能源在農村的市場容量狹小。所以,高成本嚴重制約了生物質能源的進一步發展,而需求不足、市場容量狹小又縮小了生物質能源的成本下降空間,如此惡性循環,阻礙了其進一步發展。
三、促進生物質能源發展的經濟激勵政策
1.加大宣傳力度,認真細致地做好產業布局規劃。政府部門應從上至下,認真做好開發利用生物質能源的宣傳工作,提升整個社會對發展生物質能源的認識;并對相關的政府官員及農民進行開發利用生物質能源的培訓,掃清其對生物質能源的發展存在的信息和認知障礙。在此基礎上,政府部門應組織科研機構和各地政府機關一起進行開發利用農村生物質能源的詳細評估,對農村生物質能源在本地區的分布、資源量、開發潛力、技術適用性、障礙因素等進行詳細分析,并做出各地區生物質能源發展的可行性分析報告。在此基礎上,政府做好生物質能源在農村發展的產業規劃布局。
2.實現農村生物質能源的產業集群化發展,增強區域整體競爭力。近年來,產業的集聚發展在帶動區域經濟發展,促進我國工業化建設上起著重要作用。例如,在浙江形成了一種地區集中化的制造業布局,諸如小家電業、制鞋業、制衣業、制扣業、打火機業等行業都各自集聚在特定地區。實踐證明,這種集中發展不僅有利于增長方式的轉變,同時,可以把各種生產要素聚集在一起,有利于行業的技術創新,有利于形成規模經濟效益,產生集聚效應和輻射效應,從而促進產業化和城鎮化的發展。因此,河北省在農村生物質能源產業發展的初期,應加強政策引導,在已有項目的基礎上,進一步拓展產業的發展,實現產業的集聚發展,從而創立區域品牌,提升區域競爭力,并促進農業產業化和農村城鎮化的發展。
3.鼓勵投資主體多元化。在我國的生物質能源投資領域,投資主體相對單一一直是產業發展的制約因素之一。由于在生物質能源產業發展初期,投入大、風險高等客觀制約因素的制約,國家及省級政府投入的專項基金往往優先給予具有壟斷優勢的國有企業,使民營投資主體在一定程度上受到排擠。農村生物質能源產業的發展,僅靠政府的財政支持是不夠的,需要調動社會各方的資金,需要民營資本的進入,以解決產業發展的資金制約問題;同時,若要實現生物質能源的規?;l展,提升產業的整體競爭力,也要解決投資主體單一的問題,鼓勵投資主體多元化。
4.采用靈活、多樣化的財政支持政策。目前,對生物質能源產業的財政支持以專項基金、國債投資、財政補貼、稅收優惠等為主,并取得了顯著成效。為了支持生物質能源產業的快速發展,可以采用預算內投入、國債投入、財政貼息、財政補貼、政府采購和財政擔保等多種工具和組合。一方面,財政資金不僅支持項目生產者,同時也要支持產品使用者甚至中介服務者,即財政資金不僅鼓勵產業生產者,同時鼓勵消費者,在促進生產規模擴大的同時拉動生物質能源的需求。另一方面,促使財政資金的作用標的多樣化,對人、設備和產品等,分別靈活運用各種正負激勵機制,充分發揮其杠桿作用,支持農村生物質能源的發展。
5.促進融資渠道多元化。農村生物質能源的快速健康發展,需要建立有效地融資機制,需要與其發展相適應的金融工具、風險管理手段以及融資新思路。我們可以借鑒歐美等國家的經驗,借助政府的政策推動,在項目前期從增加投入、投資補貼、貸款貼息、折舊優惠、排污權交易、市場配額與自愿協議機制、保險等方面,幫助投資者降低投資成本、控制市場風險。由于許多農村生物質能源開發項目規模不大,所以在其融資問題上,應拓展小企業貸款機制和業務以適應其發展的需要。政府應鼓勵銀行或農村信用社借鑒國際微小貸款技術,完善小項目的貸款機制,完善小企業或農戶貸款管理、分賬核算、單獨考核、風險管理等相關制度辦法和業務流程。同時政府應鼓勵區域性中小企業擔保機構的發展,對其新增的貸款擔保金額、風險損失等給予一定的獎勵和補助。
6.建立產學研技術聯盟,促進技術創新。政府投資支持關鍵技術研發的同時,加強科研機構之間及科研機構與企業間的合作,促進生物質能源技術的產業化。以澳大利亞為例,其政府通過加強公共部門研究機構與私營企業界之間的合作,實現了“共擔風險、共享成果”,有效帶動了企業界投資“綠色產業”技術研發的積極性,加速了關鍵技術的科技成果轉化與產業化進程。我們在發展農村生物質能源產業的過程中,可借鑒上述成功經驗,在干中學,學中干,促進技術創新及技術的轉化。
參考文獻:
[1]馬吳,促進我國農村生物質能源發展的財稅政策研究[J].生態經濟:2010(5)
關鍵詞:生物質;生物質能;產業;沼氣;生物質發電;生物質燃料;能源作物
1 概 述
近年來,在能源危機、保護環境和可持續發展的呼聲中,可再生的清潔能源以及能源的多元化倍受關注,生物質能成為其中的一個新亮點。
為了促進可再生能源的開發利用,增加能源供應,改善能源結構,保障能源安全,保護環境,實現經濟社會的可持續發展,中國已經制定并實施了《可再生能源法》??稍偕茉词乔鍧嵞茉?,是指在自然界中可以不斷再生、永續利用、取之不盡、用之不竭的資源,它對環境無害或危害極小,而且資源分布廣泛,適宜就地開發利用。根據《可再生能源法》的定義,目前主要包括太陽能、風能、水能、生物質能、地熱能和海洋能等非化石能源[1]。中國可再生能源資源非常豐富,開發利用的潛力很大,其中生物質能的開發潛力更大。
生物質能一直是人類賴以生存的重要能源,它目前是僅次于煤炭、石油和天然氣而居于世界能源消費總量第四位的能源,在整個能源系統中占有重要地位[2]。據有關專家估計,生物質能極有可能成為未來可持續能源系統的重要組成部分,到下世紀中葉,采用新技術生產的各種生物質替代燃料將占全球總能耗的40%以上。
生物質能是蘊藏在生物質中的能量,是綠色植物通過葉綠素將太陽能轉化為化學能而貯存在生物質內部的能量。煤、石油和天然氣等化石能源也是由生物質能轉變而來的。生物質能是可再生能源,通常包括以下幾個方面:一是木材及森林工業廢棄物;二是農業廢棄物;三是水生植物;四是油料植物;五是城市和工業有機廢棄物;六是動物糞便。在世界能耗中,生物質能約占14%,在不發達地區占60%以上。全世界約25億人的生活能源的90%以上是生物質能,直接燃燒生物質的熱效率僅為10%~30%[3]。生物質能的優點是燃燒容易,污染少,灰分較低;缺點是熱值及熱效率低,體積大而不易運輸。
目前世界各國正逐步采用如下方法利用生物質能:1)熱化學轉換法,獲得木炭、焦油和可燃氣體等高品位的能源產品,該方法又按其熱加工的工藝不同,分為高溫干餾、熱解、生物質液化等方法;2)生物化學轉換法,主要指生物質在微生物的發酵作用下,生成沼氣、酒精等能源產品;3)利用油料植物所產生的生物油;4)把生物質壓制成成型狀燃料(如塊型、棒型燃料),以便集中利用和提高熱效率。
“為了緩解中國能源短缺問題,保證能源安全,治理有機廢棄污染物,保護生態環境,建議國家應大力開發生物質能,實施能源農業的重大工程。”中國作物學會理事長路明研究員在接受記者采訪時說[4],“生物能源開發工程應主要包括:沼氣計劃、酒精計劃、秸稈能源利用計劃和能源作物培育計劃等?!?/p>
在2006年8月召開的全國生物質能源開發利用工作會議上,國家發展與改革委員會副主任陳德銘提出,今后15年,中國在生物質能源方面將重點發展農林生物質發電、生物液體燃料、沼氣及沼氣發電、生物固體成型燃料技術四大領域,開拓農村發展新型產業,為農村提供高效清潔的生活燃料,并為替代石油開辟新的渠道。
綜上所述,目前,中國生物質能源的產業化利用途徑主要包括以下方面:沼氣利用工程、農林生物質發電、生物固體成型燃料、生物質液體燃料、能源作物培育利用等。
2 中國生物質能產業發展目標
中國農村生物質能是一座待開發的寶藏。根據《可再生能源中長期發展規劃》確定的主要發展目標,到2010年,生物質發電達到550萬千瓦(5.5GW),生物液體燃料達到200萬噸,沼氣年利用量達到190億立方米,生物固體成型燃料達到100萬噸,生物質能源年利用量占到一次能源消費量的1%;到2020年,生物質發電裝機達到3000萬千瓦,生物液體燃料達到1000萬噸,沼氣年利用量達到400億立方米,生物固體成型燃料達到5000萬噸,生物質年利用量占到一次能源消費量的4%[5]。
開發利用生物質能是當前國內外廣泛關注的重大課題,既涉及農業和農村經濟發展,又關系到國家的能源安全。今后5~10年,中國農村生物質能發展的重點是沼氣、固體成型燃料和能源作物?!掇r業生物質能產業發展規劃》確定的主要發展目標是[6,7]:到2010年,全國農村戶用沼氣總數達到4000萬戶,新建大中型養殖場沼氣工程4000處,生物質能固體成型燃料年利用量達到
100萬噸,能源作物的種植面積達到2400萬畝左右。
據統計,全世界每年通過光合作用生成的生物質能約50億噸,相當于世界主要燃料消耗的10倍,而作為能源的利用量還不到其總量的1%,中國的利用量更是遠遠低于世界平均水平[8]。2005年,中國可再生能源開發利用總量約1.5億噸標準煤(tce),為當年全國一次能源消費總量的7%(其中非水電可再生能源利用占1%),根據政府的規劃目標,到2010和2020年可再生能源利用總量將達到2.7億tce和5億tce,分別占屆時能源消費總量的11%和16%(其中非水電可再生能源利用占2%和5%)[9]。因此,中國生物質能的發展利用空間很大。
3 中國生物質能產業化的發展前景
3.1沼氣利用工程的發展空間
沼氣的利用主要包括沼氣燃氣和沼氣發電。目前,中國農村生物質能開發利用已經進入了加快發展的重要時期。統計顯示,截至2005年底,中國農村中使用沼氣的農戶達到1807萬多戶,建成養殖場沼氣工程3556處,產沼氣約70億立方米,折合524萬噸標準煤,5000多萬能源短缺的農村居民通過使用了清潔的氣體燃料,生活條件得到根本改善[5]。中國已經建成大中型沼氣池3萬多個,總容積超過137萬立方米,年產沼氣5500萬立方米,僅100立方米以上規模的沼氣工程就達到630多處[10]。距離2010年預定目標的發展空間還很大。
中國經過二十多年的研發應用,在全國興建了大中型沼氣工程和戶用農村沼氣池的數量已位居世界第一。不論是厭氧消化工藝技術,還是建造、運行管理等都積累了豐富的實踐經驗,整體技術水平已進入國際先進行列。
沼氣發電發展前景廣闊,但目前還存在一些障礙,如技術障礙、市場障礙、政策障礙等,通過制定發展規劃、加強技術保障體系建設、引入競爭機制,創新投資體系,研究制定促進沼氣發展利用的國家級配套政策,等等。當技術、市場、政策等壁壘被克服后,沼氣發展前景廣闊,產業空間巨大。
3.2生物質能發電的發展前景
目前,生物質發電主要包括沼氣發電、生物質直燃發電、生物質混燃發電、農林秸稈生物質氣化發電、生物質炭化發電、林木生物質發電等。
生物質能源轉化為電能,正面臨著前所未有的發展良機:一方面,石油、煤炭等不可再生的化石能源價格飛漲;另一方面,各地政府頂著“節能降耗20%”的軍令狀,對落實和扶持生物質能源發電有了相當大的默契和熱情。國家電網公司擔任大股東的國能生物質發電公司目前已有19個秸稈發電項目得到了主管部門批準,大唐、華電、國電、中電等集團也紛紛加入,河北、山東、江蘇、安徽、河南、黑龍江等省的100多個縣、市開始投建或是簽訂秸稈發電項目[8]。
煤炭作為一次性能源,用一噸少一噸。而中國小麥、玉米、棉花等農作物種植面積很大,產量很高,而且農作物是可再生資源,相對于現在電廠頻頻“斷煤”、不堪煤價攀升的尷尬局面,推廣秸稈發電具有取之不盡的資源優勢和低廉的成本優勢。
生物質直接燃燒發電(簡稱生物質發電)是目前世界上僅次于風力發電的可再生能源發電技術。據初步估算,在中國,僅農作物秸稈技術可開發量就有6億噸,其中除部分用于農村炊事取暖等生活用能、滿足養殖業、秸稈還田和造紙需要之外,中國每年廢棄的農作物秸稈約有1億噸,折合標準煤5000萬噸。照此計算,預計到2020年,全國每年秸稈廢棄量將達2億噸以上,折合標準煤1億噸,相當于煤炭大省河南一年的產煤量。
為保障生物質發電原料供應,在強化傳統農業生產的基礎上,應大力開發森林、草地、山地、丘陵、荒地和沙漠等國土資源,充分挖掘生態系統的生物質生產潛力。重點加強高效光合轉化作物、速生林木與特種能源植物的培育推廣,大幅度擴大生物質資源的生產規模,逐步建立多樣化的生物質資源生產基地。
大力發展生物質發電正當其時。中國“十一五”規劃要求:建設資源節約型、環境友好型社會,大力發展可再生能源,加快開發生物質能源,支持發展秸稈發電,建設一批秸稈和林木質電站,生物質發電裝機達550萬千瓦。中國可再生能源發電價格實行政府定價和政府指導價兩種形式。其中生物質發電項目上網電價實行政府定價,電價標準由各?。ㄗ灾螀^、直轄市)2005年脫硫燃煤機組標桿上網電價加每千瓦時0.25元補貼電價組成[11]。 作為《中華人民共和國可再生能源法》配套法規之一的《可再生能源發電價格和費用分攤管理試行辦法》規定,生物質發電項目補貼電價,在項目運行滿15年后取消。自2010年起,每年新批準和核準建設的發電項目補貼電價比上年批準項目遞減2%。發電消耗熱量中常規能源超過20%的混燃發電項目,不享受補貼電價[11]。通過招標確定投資人的生物質發電項目,上網電價按中標確定的價格執行,但不得高于所在地區的標桿電價。
2010年,中國生物質能產量將達到22TWh,生物質發電裝機容量5.5GW,占全國總發電量的0.78%;2020年,中國生物質能產量達到120TWh,生物質發電裝機容量30GW,占全國總發電量的2.6%;2010年和2020年可再生能源發電占發電總量的比例仍然較小,分別為8.63%和11.86%[12]。國家發展與改革委員會計劃到2020年底將可再生能源發電的比例提升到15%~16%。
據農業部提供的數據[13],中國擁有充足的可發展能源作物,如農作物秸稈年產6億噸、畜禽糞便年產21.5億噸、農產品加工業如稻殼、玉米芯、花生殼、甘蔗渣等副產品的年產量超過1億噸、邊際土地4.2億公頃,同時還包括各種荒地、荒草地、鹽堿地、沼澤地等。據中國科學院石元春院士估計,如果能利用現有農作物秸稈資源的一半,生物質產業的產值就可達近萬億元人民幣。截止到2005年底,中國生物質發電量2GW,距離2010年的5.5GW和2020年的30GW還有很大的發展空間。作為唯一可運輸并儲存的可再生能源,憑其優越的先天條件,中國生物質能發電產業具備廣闊的發展空間,擁有巨大的投資價值。
3.3 生物質固體燃料的發展模式
生物質固體成型燃料也是農業部今后的重點發展領域之一。農業部將重點示范推廣農作物秸稈固體成型燃料,重點在東北、黃淮海和長江中下游糧食主產區進行試點示范建設和推廣,發展顆粒、棒狀和塊狀固體成型燃料,并同步開發推廣配套爐具,為農戶提供炊事燃料和取暖用能。
豐富、清潔、環保又可再生的生物質能源過去卻沒有得到重視,而被白白浪費掉。河南農業大學張百良教授分析指出,除去飼養牲畜、工業用和秸稈還田,中國每年還具有4億噸制作成型燃料的資源可以生產1.5億噸成型燃料,可替代1億噸原煤,相當于4個平頂山煤礦的年產量[8]。以農作物秸稈為原料的生物質固體燃料產業規模雖然不是很大,但因目前開發程度低,發展空間仍巨大。
3.4生物質液體燃料的發展模式
3.4.1 生物液體燃料生產大國的典型模式
生物液體燃料具有替代石油產品的巨大潛力,得到了各國的重視,主要包括燃料乙醇和生物柴油。國際油價的持續攀升,提高了生物液體燃料的經濟性,在一些國家和地區已經具有了商業競爭力。目前,巴西燃料乙醇折合成油價約25美元/桶,低于原油價格。2005年,巴西和美國仍然是燃料乙醇的生產大國,分別以甘蔗和玉米為原料,摻混汽油,占其國內車用交通燃料的50%和3%,比2004年分別提高6%和1%。美國在2001~2005年,燃料乙醇產量已經翻了一番,2005年最新的能源法案中又提出,到2010年燃料乙醇產量再增加一倍的目標。歐盟確定了到2010年生物液體燃料在總燃料消耗的比例達到6%的目標[14]。
目前,生產生物液體燃料比較成功的典型模式有巴西模式和美國模式。
1)巴西甘蔗-乙醇模式
巴西是推動世界生物燃料業發展的先鋒。它利用從甘蔗中提煉出的蔗糖生產乙醇,代替汽油作為機動車行駛的燃料。如今巴西乙醇和其他競爭燃料相比,價格上已具有競爭性。這也是當前生物燃料業發展最為成功的典范。巴西熱帶地區的光照使得那里非常適合種植甘蔗。現在,巴西已經是世界上最大的甘蔗種植國,每年甘蔗產量的一半用來生產白糖,另一半用來生產乙醇。
最近幾年,由于過高的汽油價格和混合燃料轎車的推廣,巴西燃料乙醇工業更是得到了長足的發展?;旌先剂限I車能夠以汽油和乙醇的混合物為燃料,自從2003年在巴西大眾市場銷售后,銷量節節攀升,目前已經占據了巴西轎車市場的半壁江山。在混合燃料轎車需求的拉動下,巴西燃料乙醇的日產量從2001年的3000萬升增加到2005年的4500萬升,已能滿足國內約40%的汽車能源需求[14]。
用蔗糖生產乙醇是目前世界上制造乙醇最便宜的方法。在未來4年中,巴西計劃將新建40~50家大型乙醇加工廠。為了保證原料供應,甘蔗的種植面積也將不斷擴大。
當前巴西生物燃料發展戰略的成功,并不意味著巴西的蔗糖乙醇會成為世界生物燃料業未來的選擇。因為即使只替代目前全球汽油產量的10%,也需要將巴西現有的甘蔗種植面積擴大40倍。巴西不可能“騰”出這么多土地用于種植甘蔗。另外,由于甘蔗的品種有強烈的地域性,巴西的技術路線在別的國家很難走得通。就連非洲、印度、印度尼西亞都無法照搬,更別說主要地處溫帶的中國了。
因此,巴西模式盡管取得了迄今最大的成功,但卻不是未來世界生物燃料業發展的方向,更不適合地處溫帶、缺少耕地的中國。探索適合中國國情的生物液體燃料發展模式成為當務之急。
2)美國玉米-乙醇模式
美國是主要的燃料乙醇生產國之一,但與巴西不同,它用的不是甘蔗而是玉米。盡管有不少反對的聲音,但美國燃料乙醇的日產量仍從1980年的100萬升增加到現在的4000萬升。目前,美國已投入生產的乙醇生產廠有97家,另外還有35家正在建設當中。這些工廠幾乎都集中在玉米種植帶。
玉米中用于生產乙醇的主要成分是淀粉,通過發酵它可以很容易地分解為乙醇。這正是用玉米生產乙醇的優勢,但這也是人們反對的原因,因為淀粉是一種重要的糧食。2007年美國計劃投入4200萬噸玉米用于乙醇生產,按照全球平均食品消費水平,同等數量的玉米可以滿足1.35億人口一年的食品消耗[14]。
中國現在80%的乙醇的原料是谷類,由于原本過剩的谷物在2000年后產量快速減少,使得燃料乙醇的發展再次面臨挑戰[15]。玉米加工燃料乙醇業過快發展,一些地區甚至玉米主產區已在考慮進口玉米了。國家已經制定相關政策,對玉米加工燃料乙醇項目加以限制,強調發展燃料乙醇要以非糧原料為主,因為谷類供給安全問題對于擁有巨大人口的中國來說,始終應該放在首位。糧食安全始終是國家重大戰略問題。中國糧食不能承受“能源化”之重。中國國情和美國、巴西不一樣,其成功經驗雖有可資借鑒之處,但不能照搬他們的模式。
生物液體燃料方面新技術的研發,在很大程度上取決于解決生物燃料生產的原料供應問題。目前生產液體燃料大多使用的是糧食類作物,如玉米、大豆、油菜籽、甘蔗等。但是從能源的投入、產出分析,利用糧食類作物生產液體燃料是不經濟的。因此,利用木質纖維素制取燃料乙醇將是解決生物液體燃料的原料來源和降低成本的主要途徑之一。
3.4.2中國生物質液體燃料的產業化發展途徑
中國生物液體燃料的發展已初具規模。當前,中國以陳化糧為原料生產燃料乙醇的示范工程,年生產能力已達102萬噸,生產成本也達到了消費群體初步接受的水平。在非糧食能源作物種植方面,中國已培育出“醇甜系列”雜交甜高粱品種,并建成了產業化示范基地,培育并引進多個畝產超過3噸的優良木薯品種,育成了一批能源甘蔗新品系和能糖兼用甘蔗品種。具備了利用菜籽油、棉籽油、木油、茶油和地溝油等原料年產10萬噸生物柴油的生產能力[16]。
1)油菜籽-生物柴油模式
中國農科院油料作物研究所所長王漢中研究員呼吁:國家應大力推廣“油菜生物柴油”。生物柴油相對于礦物柴油而言,是通過植物油脂脫甘油后再經過甲脂化而獲得。發展油菜生物柴油具備三大優點:一是可再生;二是優良的環保特性:生物柴油中不含硫和芳香族烷烴,使得二氧化硫、硫化物等廢氣的排放量顯著降低,可降解性還明顯高于礦物柴油;三是可被現有的柴油機和柴油配送系統直接利用。因此,生物柴油在石油能源的替代戰略中具有核心地位。
目前,發展生物柴油的瓶頸是原料。木本油料的規模有限,大豆、花生等草本油料作物與水稻、玉米等主要糧食作物爭地,擴大面積的潛力不大。而作為生物柴油的理想原料,油菜具有其獨特的優勢。首先適應范圍廣,發展潛力大:長江、黃淮流域、西北、東北等廣大地區都適宜于油菜生長;其次油菜的化學組成與柴油很相近:低芥酸菜油的脂肪酸碳鏈組成與柴油很相近,是生物柴油的理想原料;第三,可較好地協調中國糧食安全與能源安全的矛盾:長江流域和黃淮地區的油菜為冬油菜,充分利用了耕地的冬閑季節,不與主要糧食作物爭地。
根據歐洲油菜發展的經驗和油料科技進步的情況,王漢中預計,只要政策、科技、投入均能到位,經過15年的努力,到2020年,中國油菜種植面積可達到4億畝,平均畝產達到200千克,含油量達到50%左右。屆時,中國每年可依靠“能源油菜”生產6000萬噸的生物柴油(其中4000萬噸來源于菜油,2000萬噸來源于油菜秸稈的加工轉化),相當于建造3個永不枯竭的“綠色大慶油田”[17]。
2)纖維素-乙醇模式
在整個生物燃料領域,當前最吸引投資者的并不是用蔗糖、玉米生產乙醇,或是從油菜籽中提煉生物柴油,而是用纖維素制造乙醇。所有植物的木質部分--通俗地說,就是“骨架”--都是由纖維素構成的,它們不像淀粉那樣容易被分解,但大部分植物“捕獲”的太陽能大多儲存在纖維素中。如果能把自然界豐富且不能食用的“廢物”纖維素轉化為乙醇,那么將為世界生物燃料業的發展找到一條可行的道路。
雖然因技術上的限制,目前還沒有一家纖維素乙醇制造廠的產量達到商業規模,但很多大的能源公司都在競相改進將纖維素轉化為乙醇的技術。最大的技術障礙是預處理環節(將纖維素轉化為通過發酵能夠分解的成分)的費用過于昂貴。但是,要想用纖維素生產乙醇,預處理環節無法回避。技術上的不確定性,迫使制造乙醇的大部分投資仍集中在傳統的工藝--通過玉米、蔗糖生產乙醇,但這些辦法無法從根本上解決當前的能源危機。為了保證能源安全,美國總統布什說,美國政府計劃在6年內把纖維素乙醇發展成一種有競爭力的生物燃料。
因為發展能源不可能走犧牲糧食的道路。盡管現在技術上還存在障礙,但大部分人仍相信,利用纖維素生產燃料乙醇代表了未來生物燃料發展的方向。中國生物質液體燃料的未來也同樣寄希望于用纖維素生產燃料乙醇。一旦技術取得突破,纖維素乙醇產業化發展空間巨大,產值難以估量。但是,各國的國情與能源結構不同,不能寄希望于某個方面來解決,因為任何國家都不可能單靠技術引進發展本國的生物燃料產業。因此,需要因地制宜,多能互補。
3)能源作物-生物液體燃料模式
石元春院士表示,在能源結構的歷史轉型中,中國發展生物質能源有很強的現實性和可行性。目前,中國對石油的進口依存度為近40%;SO2和CO2的排放量也分居世界第一和第二位。中國發展生物質能源不僅原料豐富,而且還有自行培養的甜高粱、麻瘋樹等優良能源植物;燃料乙醇、生物柴油等主產品工業轉化技術基本成熟且有較大的改進空間,成本降幅一般在25%~45%,且目前在新疆、山東、四川等地已取得進展[4]。
發展能源作物不會威脅糧食安全與環保。曾有專家提出能源安全和糧食安全存在矛盾。解決這個問題需要充分認識到糧食安全和能源安全有統一性,發展能源農業將是促進農民增收、調動農民種糧積極性的有效措施。糧食作物和能源作物有很好的互補性。首先,能源作物大都是高產作物,既能滿足糧食安全的需求,又是很好的能源作物。其次,能源農業開發的領域很廣,可以做到不與或少與糧食爭地。能源農業開發的領域,大多是利用農業生產中的廢棄物,如利用畜禽場糞便、農產品加工企業的廢水與廢物開發能源,既能增加農民收入,又能為糧食生產提供優質肥料,是生產清潔能源、促進糧食生產、保證糧食安全和能源安全的雙贏舉措。
除糧食外,中國其他可用于生物質能生產的植物和原料還有很多,如甘蔗、甜菜、薯類等。廣西科學院院長黃日波說,僅廣西的甘蔗資源和木薯資源分別具備年產830萬噸和1300萬噸生物乙醇的生產潛力,加起來超過2000萬噸[15]。
科技部中國生物技術發展中心有關專家指出,根據能源作物生產條件以及不同作物的用途和社會需求,估計中國未來可以種植甜高粱的宜農荒地資源約有1300萬公頃,種植木薯的土地資源約有500萬公頃,種植甘蔗的土地資源約有1500萬公頃[15]。如果其中20%~30%的宜農荒地可以用來種植上述能源作物,充分利用中國現有土地與技術,生產的生物質可轉化5000萬噸乙醇,前景十分可觀。
據農業部科教司透露,為穩步推動中國生物質能源的發展,并為決策和進一步開發利用土地資源提供可靠的數據,該司決定按照“不與人爭糧,不與糧爭地”的原則,開展對適宜種植生物質液體燃料專用能源作物的邊際土地資源進行調查與評價工作,以摸清適宜種植能源作物邊際土地資源總量及分布情況[18]。
以能源作物為原料的生物液體燃料模式發展潛力巨大,將是未來生物質能源發展的方向之一。
4) 林木生物質-生物柴油發展模式
利用中國豐富的林木生物質資源生產生物柴油,將薪炭林轉變為能源林,實現以林木生物質能源對油汽的替代或部分替代,探索兼顧能源建設和生態環境建設的新模式,實現可再生能源與環境的可持續發展。開發林業生物質能產業是林業的一個很有潛力的新產業鏈,既是機會,也是創新,不僅具有巨大潛力和發展空間,更是林業發展新的戰略增長點。
“森林具有可再生資源的屬性。林業是天然的循環經濟。生物質能技術是林業發展的新契機?!睂<已芯恐赋觯袊镔|資源比較豐富,據初步估計,中國僅現有的農林廢棄物實物量為15億噸,約合7.4億噸標準煤,可開發量約為4.6億噸標準煤[19]。專家預測2020年實物量和可開發量將分別達到11.65億噸和8.3億噸標準煤。中國現有木本油料林總面積超過600多萬公頃,主要油料樹種果實年產量在200多萬噸以上,其中,不少是轉化生物柴油的原料,像麻瘋樹、黃連木等樹種果實是開發生物柴油的上等原料。
中國現有300多萬公頃薪炭林,每年約可獲得近1億噸高燃燒值的生物量;中國北方有大面積的灌木林亟待利用,估計每年可采集木質燃料資源1億噸左右;全國用材林已形成大約5700多萬公頃的中幼齡林,如正常撫育間伐,可提供1億多噸的生物質能源原料;同時,林區木材采伐、加工剩余物、城市街道綠化修枝還能提供可觀的生物質能源原料[19]。
中國發展林業生物質能源前景十分廣闊。中國林業可用來發展生物質能源的樹種多樣,可作為能源利用的現有資源數量可觀。在已查明的油料植物中,種子含油量40%以上的植物有150多種,能夠規?;嘤玫膯坦嗄緲浞N有10多種。目前,作為生物柴油開發利用較為成熟的有小桐子、黃連木、光皮樹、文冠果、油桐和烏桕等樹種。初步統計,這些油料樹種現有相對成片分布面積超過135萬公頃,年果實產量在100萬噸以上,如能全部加工利用,可獲得40余萬噸生物柴油[19]。
目前全國尚有5400多萬公頃宜林荒山荒地,如果利用其中的20%的土地來種植能源植物,每年產生的生物質量可達2億噸,相當于1億噸標準煤;中國還有近1億公頃的鹽堿地、沙地、礦山、油田復墾地,這些不適宜農業生產的土地,經過開發和改良,大都可以變成發展林木生物質能源的綠色“大油田”、“大煤礦”,補充中國未來經濟發展對能源的需要[18]。國家林業局副局長祝列克介紹,“十一五”期間,中國主要開展林業生物質能源示范建設,到2010年,實現提供年產20萬噸~30萬噸生物柴油原料和裝機容量為100萬千瓦發電的年耗木質原料。到2020年,可發展專用能源林1300多萬公頃,專用能源林可提供年產近600萬噸生物柴油原料和裝機容量為1200萬千瓦發電年耗木質原料,兩項產能量可占國家生物質能源發展目標30%以上,加上利用林業生產剩余物,林業生物質能源占到國家生物質能源發展目標的50%以上[19]。
可見,林木生物質能源的發展將逐步成為中國生物質能源的主導產業,發展空間巨大,前景廣闊。
4 結 語
國家已出臺的《生物燃料乙醇及車用乙醇汽油“十一五”發展專項規劃》及相關產業政策,明確提出“因地制宜,非糧為主”的發展原則,發展替代能源堅持“不與人爭糧,不與糧爭地”,要更加依靠非糧食原料。從大方向來看,用非糧原料能源替代化石能源是長遠方向,例如薯類和纖維質以及一些植物果實來替代。為避免糧食“能源化”問題[20],必須開發替代糧食的能源原料資源。開發替代糧食資源,如以農作物秸稈和林木為代表的各類木質纖維類生物質,及其相應的生物柴油和燃料乙醇生產技術,被專家們認為是未來解決生物質液體燃料原料成本高、原料有限的根本出路。
生物質能源將成為未來能源重要組成部分,到2015年,全球總能耗將有40%來自生物質能源,主要通過生物質能發電和生物質液體燃料的產業化發展實現。
有關專家也對生物質能源的發展寄予了厚望,認為中國完全有條件進行生物能源和生物材料規模工業化、產業化,可以在2020年形成產值規模達萬億元。
雖然生物質能源發展潛力巨大、前景廣闊,并正在逐步打破中國傳統的能源格局,但是生物質能的產業化發展過程也并非一帆風順,因為生物質原料極其分散,采集成本、運輸成本和生產成本很高,成為生物質燃料乙醇業的致命傷,若不能妥善解決將可能成為生物質能產業發展的瓶頸。
生物質能的資源量豐富并且是環境友好型能源,從資源潛力、生產成本以及可能發揮的作用分析,包括生物燃油產業化在內的生物質能產業化開發技術將成為中國能源可持續發展的新動力,成為維護中國能源安全的重要發展方向。在集約化養殖場和養殖小區建設大中型沼氣工程也將成為中國利用生物能源發電的新趨勢。從環保、能源安全和資源潛力綜合考慮,在中國推進包括以沼氣、秸稈、林產業剩余物、海洋生物、工業廢棄物為原料的生物質能產業化的前景將十分廣闊。
[參考文獻]:
[1] 中華人民共和國可再生能源法.china.org.cn/chinese/law/798072.htm.
[2] 生物質能發展重點確定沼氣固體成型燃料能源作物[EB/OL]. (2007-01-26)[2007-03-18].(來源:人民日報)。
[3] 生物質能的概況. (2006-11-22)[2007-04-02].
[4] 潘 希. 生物質能欲開辟中國農業“第三戰場”。 科學時報,2005-04-30.
[5] 佚 名。我國確定農村生物質能發展戰略目標[EB/OL]. (2006-10-13)[2007-03-18]. 來源: 新華網.
[6] 生物質能發展重點確定沼氣固體成型燃料能源作物[EB/OL]. (2007-01-26)[2007-03-18].(來源:人民日報)。
[7] 師曉京. 農業部正制定《農業生物質能產業發展規劃》,今后重點發展沼氣、固體成型燃料和能源作物[N]. 農民日報,2007-01-26.
[8] 王瓊杰. 日生物質能源能挑起我國未來能源的“大梁”嗎?中國礦業報,2007-03-06.
[9] 世界可再生能源發展現狀及未來發展趨勢分析.[EB/OL]
[10] 譚利偉,簡保權. 生物質能源的開發利用[J]. 農業工程技術.新能源產業,2007,總291期,第3期:18-27.
[11] 《可再生能源發電價格和費用分攤管理試行辦法》[S]. [2007-04-03].
[12] Hu Xuehao. The Development Prospects of Renewable Energy and Distributed Generation in Power System and the Requirement for Energy Storage Technology[R/OL]. 2006 International Conferences on Power System Technology, Chongqing, China, October 22-24, 2006.
[13]中國科學技術信息研究所. 農業生物質資源-待開發的金礦。2006[2007-04-2].
[14] 蔡如鵬. 生物燃料走在路上[J]中國新聞周刊,2006,第48期,第66頁.
[15] 王一娟 徐時芬. 專家為中國生物能源發展獻策--開發替代糧食原料,破解燃料乙醇困局[J]. 經濟參考報,2005-09-30.
[16]農村生物質能利用大有可為[EB/OL] . (2007-02-25)[2007-04-04].
[17] 胡其峰.專家呼吁大力推廣“油菜生物柴油”[N/OL].光明日報, 2005-08-02.
[18] 師曉京. 農業部開展適宜種植能源作物邊際土地資源調查[N/OL]. 農民日報,2007-03-21.
關鍵詞:中國生物質能源;發展現狀;問題;對策
伴隨著國家相關生物質能源生產行業標準規范的逐步完善,目前我國生物質能源生產開發已初具規模,在一系列法律法規的保障和財稅政策的推動下獲得了良好的發展。然而,中國生物質能源產業在實際發展過程當中,仍然存在著工業體系不完善、原料資源不足、產業化基礎不夠牢固、市場競爭力較低和研究能力滯后等諸多問題。因此,如何準確把握生物質能源產業的影響因素,制定合理有效的應對策略,是當下的生物質能源發展中迫切關注的重要課題。
1 世界能源結構的現狀與問題
1.1 節能減排舉措影響世界能源結構
燃料的使用效率與能源結構直接決定了二氧化碳的排放量,因而能源開發利用同自然環境之間的聯系緊密。近年來,煤、石油和天然氣這三大化石燃料的使用使得全球二氧化碳排放量急劇增加,引起了氣候的異常及失衡。有研究指出,生物質燃料所排放的二氧化碳量要比化石原料少95%左右,若每年生產一億噸生物質燃料,則能達成5.5%二氧化碳的減排,故生物質能源產業的推進對世界能源結構的優化具有重要意義。
1.2 世界化石燃料危機嚴重
據統計,在全球能源的總用量中,化石能源所占比例高達85%,每年石油、煤炭和天然氣的儲量都在不斷下降。作為不可再生資源,人們賴以生存的石化能源正在日趨枯竭,使得人類面臨愈發嚴峻的能源危機。
1.3 可持續發展理念促進生物質能源產業發展
如今,可持續發展思想已深入人心。作為一種可再生能源,生物質能源在給人們提供生產原料與能量的同時實現了環境友好的目標,能夠在很大程度上緩解人們對石化資源的依賴。
2 生物質能源技術開發的進展
2.1 生物液體燃料
包括生物柴油、燃料乙醇和其他液體燃料。當前采用液體催化劑的化學酯交換法是生產生物柴油的關鍵技術,利用對原料油當中水分、游離酸的嚴格脫除來防止催化劑失活。液體酸催化方法雖然能夠避免水分、游離酸對產率的影響,但設備易被酸腐蝕、甲醇與丙三醇難以分離,且環境友好性較差。燃料乙醇的生產目前還在探索過程中,我國的燃料乙醇發展快,以吉林燃料乙醇公司、河南天冠集團等為代表的企業都在燃料乙醇的研究上取得了較大的進展。此外,生物質快速熱裂解液化等技術也是國際上的研究熱點。
2.2 生物燃氣
瑞典、丹麥和德國的生物燃氣技術發達,已經實現了規?;?、自動化與專業化,多使用高濃度糞草原料進行中溫發酵,其應用逐漸延伸到車用燃氣與天然氣管網領域。至2008年,我國的沼氣工程初步實現全面發展,厭氧擋板反應器、上流式厭氧污泥床等發酵工藝都有了示范應用。但受未熱電聯產和環境、溫度條件影響,大多沼氣工程穩定性不足且高濃度發酵等工藝應用少。
2.3 固體成型燃料
歐美地區的生物質固體成型燃料已走向規?;彤a業化,瑞典、泰國等地區對固體成型燃料也給予了很高的重視。20世紀80年代,我國開始研究固體成型燃料并逐步建立了以蘇州恒輝生物能源開發有限公司等企業為代表的燃料工廠。
2.4 微藻能源
微藻生物柴油技術的研發主要集中在含油量高且環境適應性強的微藻的選育、規?;a油光生物系統的研發以及收集微藻、提取油脂這幾個方面,所面臨的最大難題是油脂含量、細胞密度高的微藻細胞的培養。使用微藻對石油形成進行模擬是我國研究微藻的開端,此后微藻異養發酵技術、微藻光合發酵模型等的創新都推動了我國微藻能源的研究開發。
3 影響生物質能源產業發展的因素
3.1產業模式局限
我國的生物質能源開發利用管理模式還有待健全,原料評價體系、技術規范等還不完善。項目模式也存在缺陷,例如,小型項目配套政策的缺失使得立項復雜且操作成本較高。
3.2 生產技術滯后
我國的沼氣工程大多應用的是濕發酵工藝,裝備與技術水平都比較滯后,不利于沼氣的高值化利用。非糧乙醇技術還存在障礙,受工藝復雜、酸濃度需求高、副產物多、設備要求高和成本高等因素制約,乙醇濃度不高、原料綜合利用率低和發酵效率低、時間長等問題還有待解決。此外,五碳糖菌種的缺乏、生物酶法制備技術的落后和生物柴油使用性能低、經濟性低等也是目前需要解決的難點。
3.3 資源供應不足
原料供應不足是我國生物質能源產業發展的一大瓶頸,單一的原料來源制約了沼氣工程規?;l展,非糧原料供應的間斷不利于其全年均衡生產,陳化糧等原料的缺乏影響了乙醇燃料工業發展進程,生物柴油技術也面臨著原料不足的狀況。
4 對策與建議
4.1 創新生物能源技術
生物質能源是實現我國可持續發展是重要能源保障,必須借助自主知識產權核心技術的創新來保證生物質能源產業化的持久。各級政府需積極推廣國產化計數,通過補助力度的加大來調動各單位研發應用自主技術的積極性,可通過專項資金的設立來支持生物質能技術創新,逐步形成分散式的產業體系。
4.2 合理利用邊際土地
針對原料不足這一瓶頸,應當充分利用邊際土地來發展非糧生物質能,逐步建設以能源草、甘薯、木薯等作為原料的生物質液體與氣體燃料生產基地。
4.3 加強國家政策支持
生物質能源的開發利用對于我國資源、能源供應都具有重要意義,必須將其納入安全戰略的考慮范疇并給予相應的政策支持。國家可結合生物質能源發展需求完善相關激勵體系,推行納入能源生產社會成本、環境成本的全成本定價方案,科學制定產品價格補貼、液體燃料消費鼓勵和液體燃料強制收購等方面的政策,給生物質能源發展提供強有力的體系支撐。
參考文獻
關鍵字:生物質發電 節能效果 減排作用
我國的生物能源十分豐富,科技的發展也為開發利用生物質資源提供了可能性和便捷性,尤其在當前我國政府大力提倡節約能源、保護環境的形勢下,傳統能源的能源消耗高、環境污染嚴重等已成為亟待解決的問題,此時對于生物質能源的開發利用恰能解決這兩種問題。
生物質能源即是以生物質作為載體的能源,生物質發電是指利用生物質可再生碳能源的特性進行發電,生物質發電種類眾多,包括農林廢棄物發電、沼氣發電、生活垃圾發電等在內的生物質發電。生物質能源不僅是可再生能源,利用生物質發電還具有綠色環保、電能質量好的優點,節能減排的效果十分顯著。
一、生物質發電的節能效果
生物質能源在能源轉換過程中的充足性、普遍性和使用充分性使其在能源發電領域具有明顯的節能優勢。
能源對于人類社會有著十分重要的意義,是人類社會賴以生存的重要物質基礎。當前國際上使用的能源百分之九十是石化能源,這些能源儲量有限,不可再生,大量的能源消耗使得非可再生能源急劇減少,而生物質能源則分布廣,蘊藏量大,隨處可見,使用便捷,生產過程比之化石能源也簡單的多。
農林產業是我國生物質能源原料的主要來源,我國是農林業大國,耕地廣,年產秸稈量及農產品加工廢棄物數量巨大,除去少部分作為工業原料和畜牧業飼料外,剩余的大量農業廢棄物均可作為能源燃料使用。
我國的森林面積覆蓋廣,每年森林剪修、采伐、加工后的大量林業廢棄物也可以作為生物質能源使用。而隨著我國畜牧業及工業的發展,畜禽養殖糞便、工業排有機廢水均可作為沼氣能源使用,城市化的進一步發展也使我國每年的城市垃圾量不斷增加,更加豐富了生物質能源原料的產量。
生物質的混合燃燒發電是指將生物質能源與礦物質能源兩種原料進行混合燃燒發電,這種燃燒方式不需要對電廠的現有設備進行太大的改動,還可以節省礦物質能源,大幅度降低投資費用;
將生物質原料的原料放入氣化爐中使其生成可燃氣體的過程即是生物質熱解氣化發電,熱解氣化生成的氣體經過凈化后可以供給小型燃氣輪機或者內燃機使用,節約了內燃機和燃氣輪機對于石化能源的消耗;
生物質的沼氣發電則是利用發酵技術,將工業有機廢水廢渣及屠宰場畜牧場的畜禽糞便進行發酵,生成沼氣。這一技術已在我國廣泛使用,至2000年底,我國已建立的400余家沼氣工程利用沼氣每年可發電5.4GWh。
而自2006年12月山東省單縣生物發電廠作為我國的第一家生物質發電廠建成發電以后后,僅一年的時間我國便陸續建成了包括山東高唐,河北威縣、江蘇射陽生物發電廠等在內的數十個生物質發電廠,這10家生物質發電廠投入使用以后,一年便可節省煤炭能源90萬余噸。而根據國家能源局的規劃,我國的生物質發電裝機在2015年將達到1300萬千瓦。通過以上數據可以說,生物質的節能效果十分可觀。
二、生物質發電的減排作用
生物質能源是太陽能被綠色植物通過光合作用以化學能形式儲存在有機體內的能量,由于直接來源于綠色植物的光合作用,它是真正的“綠色能源”,比起常規礦物質能源它燃燒容易、含硫量低、灰塵少、有害氣體的排放少,對于它的合理開封利用不會造成生態和環境問題。
由于二氧化碳等溫室氣體排放量的快速上升,全球正面臨著嚴峻的溫室效應問題。我國是世界上煤炭生產和消費的最大國,所使用的電力百分之七十來自煤炭,但由于我國煤炭的質量、采煤及使用過程中的技術限制導致我國的煤炭利用率低,燃煤發電不僅排放大量的二氧化碳等溫室氣體,還會產生嚴重的硫化物及粉塵污染。
作為溫室氣體排放量的大國之一,由于技術經濟等各方面的原因,我國雖是溫室效應可可能的最大受害者之一,卻還不具備承諾限排的能力,因而作為“綠色清潔能源”的生物質能源所具有的減排效果在此時更顯得十分必要。
生物質是通過光合作用吸收空氣中的水分和二氧化碳,以化學能的形式將太陽能貯存在自身內部,燃燒之后,生物質體內的化學能轉化成熱能和電能,并釋放出二氧化碳和水分,這種循環的排放和吸收結構構成獨特的自然界碳循環,在利用是能夠實現二氧化碳氣體的零排放。
據有關數據統計,生物質發電每節省1噸標準煤便可少2~3噸的二氧化碳排放量。而農業生物質的含硫量也低至0.01%~0.07%,遠比同質量的煤炭含硫量低得多,因此在減排二氧化硫等有害氣體上也有很好的效果。
三、結束語
我國人口眾多,經濟的發展面臨著資源和環境的雙重制約,化石能源蘊含量大,單人均資源含量低,隨著我國經濟的迅速發展,能源、環境與經濟三者之間的矛盾也更加銳化,對于生物質能源的開發與利用能夠有效地緩解我國當前的能源緊缺和環境污染問題。而在此過程中,我們也應意識到我國對于新能源的開發利用在技術、政策上的不足,通過提高技術完善政策等手段使生物質發電節能減排的優點能夠得到更充分的發揮。
參考文獻:
[1]朱丹,朱芷萱.我國生物質發電的現狀及發展前景預測. [J].科學咨詢/科技?管理,2012.(16).9-10
[2]張世龍,鄭美玲.生物質發電項目效益分析及政策選擇. [J].環球市場信息導報,2012.(26).9
中圖分類號: TK223文獻標識碼: A
一、生物質能的特點與發展生物質能意義
(一)生物質能的特點
1、可再生性
生物質屬可再生資源,生物質能由于通過植物的光合作用可以再生,與風能、太陽能等同屬可再生能源,資源豐富,可保證能源的永續利用;
2、低污染性
生物質的硫含量、氮含量低、燃燒過程中生成的硫化物、氮氧化物較少;生物質作為燃料時,由于它在生長時需要的二氧化碳相當于它排放的二氧化碳的量,因而對大氣的二氧化碳凈排放量近似于零,可有效地減輕溫室效應;
3、廣泛分布性
缺乏煤炭的地域,可充分利用生物質能。
4、生物質燃料總量十分豐富
根據生物學家估算,地球陸地每年生產1000~1250億噸生物質;海洋每年生產500億噸生物質。生物質能源的年生產量遠遠超過全世界總能源需求量,相當于目前世界總能耗的10倍。
(二)發展生物質能意義
生物質能源的開發利用早已引起世界各國政府和科學家的關注。國外生物質能研究開發工作主要集中于氣化、液化、熱解、固化和直接燃燒等方面。許多國家都制定了相應的開發研究計劃,如日本的陽光計劃、印度的綠色能源工程、美國的能源農場和巴西的酒精能源計劃等發展計劃。其它諸如加拿大、丹麥、荷蘭、德國、法國、芬蘭等國,多年來一直在進行各自的研究與開發,并形成了各具特色的生物質能源研究與開發體系,擁有各自的技術優勢。
我國生物質能研究開發工作,起步較晚。隨著經濟的發展,開始重視生物質能利用研究工作,從八十年代起,將生物質能研究開發列入國家攻關計劃,并投入大量的財力和人力。已經建立起一支專業研究開發隊伍,并取得了一批高水平的研究成果,初步形成了我國的生物質能產業。生物質能是一個重要的能源,預計到下世紀,世界能源消費的40%來自生物質能,我國農村能源的70%是生物質,我國有豐富的生物質能資源,僅農村秸桿每年總量達6億多噸。隨著經濟的發展,人們生活水平的提高,環境保護意識的加強,對生物質能的合理、高效開發利用,必然愈來愈受到人們的重視。因此,科學地利用生物質能,加強其應用技術的研究,具有十分重要的意義。
二、生物質能發電工藝
生物質鍋爐是將生物質直接作為燃料燃燒,將燃燒產生的能量用于發電。當今用于發電的生物質鍋爐主要包括流化床生物質鍋爐和層燃鍋爐。
(一)流化床燃燒技術
流化床燃燒與普通燃燒最大的區別在于燃料顆粒燃燒時的狀態,流化床顆粒是處于流態化的燃燒反應和熱交換過程。生物質燃料水分比較高,采用流化床技術,有利于生物質的完全燃燒,提高鍋爐熱效率。生物質流化床可以采用砂子、燃煤爐渣等作為流化介質,形成蓄熱量大、溫度高的密相床層,為高水分、低熱值的生物質提供優越的著火條件,依靠床層內劇烈的傳熱傳質過程和燃料在床內較長的停留時間,使難以燃盡的生物質充分燃盡。另外,流化床鍋爐能夠維持在 850℃穩定燃燒,可以有效遏制生物質燃料燃燒中的沾污與腐蝕等問題,且該溫度范圍燃燒NOx排放較低,具有顯著的經濟效益和環保效益。但是,流化床對入爐燃料顆粒尺寸要求嚴格,因此需對生物質進行篩選、干燥、粉碎等一系列預處理,使其尺寸、狀況均一化,以保證生物質燃料的正常流化。對于類似稻殼、木屑等比重較小、結構松散、蓄熱能力比較差的生物質,就必須不斷地添加石英砂等以維持正常燃燒所需的蓄熱床料,燃燒后產生的生物質飛灰較硬,容易磨損鍋爐受熱面。此外,在燃用生物質的流化床鍋爐中發現嚴重的結塊現象,其形成的主要原因是生物質本身含有的鉀、鈉等堿金屬元素與床料(通常是石英砂)發生反應,形成K20·4Si02和Na20·2Si02的低溫共熔混合物,其熔點分別為870℃和760℃,這種粘性的共晶體附著在砂子表面相互粘結,形成結塊現象。為了維持一定的流化床床溫,鍋爐的耗電量較大,運行費用相對較高。
(二)層燃燃燒技術
層燃燃燒是常見的燃燒方式,通常在燃燒過程中,沿著爐排上床層的高度分成不同的燃燒階段。層燃鍋爐的爐排主要有往復爐排、水冷振動爐排及鏈條爐排等。采用層燃技術開發生物質能,鍋爐結構簡單、操作方便、投資與運行費用都相對較低。由于鍋爐的爐排面積較大,爐排速度可以調整,并且爐膛容積有足夠的懸浮空間,能延長生物質在爐內燃燒的停留時間,有利于生物質燃料的充分完全燃燒。但層燃鍋爐的爐內溫度很高,可以達到1000℃以上,灰熔點較低的生物質燃料很容易結渣。同時,在燃燒過程中需要補充大量的空氣,對鍋爐配風的要求比較高,難以保證生物質燃料的充分燃燒,從而影響鍋爐的燃燒效率。
三、國內外生物質鍋爐的開發及應用
生物質發電在發達國家己受到廣泛重視,在奧地利、丹麥、芬蘭、法國、挪威、瑞典等歐洲國家和北美,生物質能在總能源消耗中所占的比例增加相當迅速。
(一)國外生物質鍋爐的開發及應用
生物質鍋爐的技術研究工作最早在北歐一些國家得到重視,隨焉在美國也開展了大量研究開發,近幾年由于環境保護要求日益嚴格和能源短缺,我國生物質燃燒鍋爐的研制工作也取得了進展。生物質
燃料鍋爐國內外發展現狀示于表1。
美國在20世紀30年代就開始研究壓縮成型燃料技術及燃燒技術,并研制了螺旋壓縮機及相應的燃燒設備;日本在20世紀30年代開始研究機械活塞式成型技術處理木材廢棄物,1954年研制成棒狀燃料成型機及相關的燃燒設備;70年代后期,西歐許多國家如芬蘭、比利時、法國、德國、意大利等國家也開始重視壓縮成型技術及燃燒技術的研究,各國先后有了各類成型機及配套的燃燒設備。
丹麥BWE公司秸桿直接燃燒技術的鍋爐采用振動水冷爐排,自然循環的汽包鍋爐,過熱器分兩級布置在煙道中,煙道尾部布置省煤器和空氣預熱器。位于加拿大威廉斯湖的生物質電廠以當地的廢木料為燃料,鍋爐采用設有BW“燃燒控制區”的雙拱形設計和底特律爐排廠生產的DSH水冷振動爐排,使燃料燃燒完全,也有效地降低了煙氣的顆粒物排放量。同時,還在爐膛頂部引入熱空氣,從而在燃燒物向上運動后被再次誘入渾濁狀態,使固體顆粒充分燃燒,提高熱效率,減少附帶物及煙氣排放量。流化床技術以德國KARLBAY公司的低倍率差速床循環流化床生物質燃燒鍋爐為代表。該鍋爐的特點主要體現在燃燒技術上。高低差速燃燒技術的要點是改變現有常規流化床單一流化床,而采用不同流化風速的多層床“差速流化床結構”。瑞典也有以樹枝、樹葉等作為大型流化床鍋爐的燃料加以利用的實例。國內無錫鍋爐廠、杭州鍋爐廠、濟南鍋爐廠等都有燃用生物質的流化床鍋爐。
(二)我國生物質鍋爐的開發及應用
我國生物質成型燃料技術在20世紀80年代中期開始,目前生物質成型燃料的生產已達到了一定的工業化規模。成型燃料目前主要用于各種類型的家庭取暖爐(包括壁爐)、小型熱水鍋爐、熱風爐,燃燒方式主要為固定爐排層燃爐。河南農業大學副研制出雙層爐排生物質成型燃料鍋爐,該燃燒設備采用雙層爐排結構,雙層爐排的上爐門常開,作為燃料與空氣進口;中爐門于調整下爐排上燃料的燃燒和清除灰渣,僅在點火及清渣時打開;下爐門用于排灰及供給少量空氣。上爐排以上的空間相當于風室,上下爐排之間的空間為爐膛,其后墻上設有煙氣出口。這種燃燒方式,實現了生物質成型燃料的分步燃燒,緩解生物質燃燒速度,達到燃燒需氧與供氧的匹配,使生物質成型燃料穩定、持續、完全燃燒,起到了消煙除塵作用。20世紀80年代末,我國哈爾濱工業大學與長沙鍋爐廠等鍋爐制造企業合作,研制了多臺生物質流化床鍋爐,可燃燒甘蔗渣、稻殼、碎木屑等多種生物質燃料,鍋爐出力充分,低負荷運行穩定,熱效率高達80%以上。浙江大學等也開展了相關研究工作。下面介紹兩種國產的代表性鍋爐。
1、無錫華光鍋爐股份有限公司
鍋爐為單鍋筒、集中下降管、自然循環、四回程布置燃秸稈爐。爐膛采用膜式水冷壁,爐底布置為水冷振動爐排。在冷卻室和過熱器室分別布置了高溫過熱器、中溫過熱器和低溫過熱器。尾部采用光管式省煤器及管式空氣預熱器。爐膛、冷卻室和過熱器室四周全為膜式水冷壁,為懸吊結構。鍋筒中心線標高為32100m。鍋爐按半露天。布置進行設計。
2、濟南鍋爐集團有限公司
濟南鍋爐集團有限公司在采用丹麥BWE技術生產生物質鍋爐的同時,也開發出循環流化床生物質鍋爐,其燃料主要為生物質顆粒。其燃料主要通過機械壓縮成型,一般不需添加劑,其顆粒密度可達到1~017t/m3,這樣就解決了生物質散料因密度低造成的燃料運輸量大的問題。但顆粒燃料的生產電耗高,一般每生產1t顆粒燃料需耗電30~
55kW,因而成本較高,大約在300元/t。循環流化床鍋爐爐內一般需添加粘土、石英沙等作為底料已輔助燃燒。由于燃料呈顆粒狀,因而上料系統同輸煤系統一致,很適于中小型燃煤熱電廠的生物質改造工程,在國家關停中小型燃煤(油)火力熱電政策和鼓勵生物質能開發政策下有廣闊的市場前景。
四、我國生物質直燃發電政策
我國具有豐富的新能源和可再生能源資源,近幾年在生物質能開發利用方面取得了一些成績。2005年2月28日通過了《可再生能源法》,其中明確指出“國家鼓勵和支持可再生能源并網發電”,它的頒布和實施為我國可再生能源的發展提供了法律保證和發展根基。隨后,與之配套的一系列法律、法規、政策等陸續出臺,如《可再生能源發電有關管理規定》(發改能源[2006]13號)、《可再生能源發電價
格和費用分攤管理試行辦法》(發改價格[2006]7號)、《可再生能源電價附加收入調配暫行辦法》(發改價格[2007]44號)、《關于2006年度可再生能源電價補貼和配額交易方案的通知》(發改價格[2007]
2446號)、《關于2007年1—9月可再生能源電價附加補貼和配額交易方案的通知》(發改價格[2008]640號)等的。與此同時,國務院有關部門也相繼了涉及生物質能的中長期發展規劃,生物質能的政策框架和目標體系基本形成。2012年科技部日前就《生物質能源科技發展"十二五 "重點專項規劃》、《生物基材料產業科技發展"十二五"專項規劃》、《生物種業科技發展"十二五"重點專項規劃》、《農業生物藥物產業科技發展"十二五"重點專項規劃》等公開征求意見。表示將建立政府引導和大型生物質能源企業集團參與科技投入機制,推進后補助支持方式向生物質能源科技創新傾斜,形成政府引導下的多渠道投融資機制。這些政策的出臺為生物質發電技術在我國的推廣利用提供了有力的保障。
四、高效潔凈生物質鍋爐的開發應用建議
(一)重點開發適用于秸稈捆燒的燃燒設備
目前對生物質直接燃燒的研究,比較多地集中在生物質燃燒特性、燃燒方法和燃燒技術等方面,而對各種燃燒技術的經濟性研究較少,更缺乏對不同燃燒方法、燃燒技術經濟性的比較分析。實際上,由于生物質(尤其是農作物秸稈)原料來源地分散,收集、運輸、貯存都需要一定的成本,有些燃燒技術需先對生物質燃料進行干燥、破碎等前期加工處理,真正適用的、值得推廣的是能源化利用總成本最低、從收集到燃燒前期加工處理過程耗能最少、對環境影響最小的技術。例如,對于秸稈類生物質,捆燒將會是最有市場競爭力的燃燒方法,所以,應針對我國農村耕種集約化程度較低的現狀,開發各種秸稈的小型打捆機械,并重點開發適用于秸稈捆燒的燃燒設備。農林加工剩余物(如甘蔗渣、稻殼、廢木料等)則宜就地或就近燃燒利用,如剩余物數量較大且能常年保證供應,則可作為熱能中心或熱電聯產鍋爐燃料,熱電聯產的鍋爐型式應優先采用循環流化床鍋爐,數量較少或不能保證常年供應的,則可采用能與煤混燒的燃燒設備。
(二)加大科技支撐力度,加強產學研結合,突破關鍵技術和核心裝備的制約
加大科技支撐力度,盡快將生物質能源的研究開發納入重大專項,開發低成本非糧原料生產燃料乙醇和高效酶水解及高效發酵工藝,研究可適用不同原料、節能環保的具有自主知識產權的生物柴油綠色合成工藝,開發適宜中國不同區域特點的高效收集秸稈資源、發展成型燃料的關鍵生產技術與裝備。
(三)做好技術方面控制
生物質鍋爐的開發過程中應當克服以下技術問題:
1、粉塵控制與防火防爆
目前生物質電廠的燃料儲運是在常壓下進行的,由于生物質燃料自身的特點,在其粉碎過程中或者在運輸過程中出現落差的情況下,會產生大量的粉塵,導致了上料系統合鍋爐給料系統的粉塵含量高,粉塵濃度甚至進入爆炸極限范圍,存在極大的安全隱患。
針對這種情況,需要我們根據國內燃料供應情況,在燃料粉碎、運輸及上料環節上對生產工藝做相應修改,如采用封閉式負壓儲運;在落差較大的位置設置除塵裝置;增設粉塵濃度傳感器對粉塵進行實時監測;保持料倉的通風性良好,監測并控制料倉的溫度、濕度。
2、燃料輸送系統的簡化
目前燃料輸送系統和鍋爐給料系統環節較多,工藝復雜,螺旋和斗式提升機經常堵塞的現象。燃料輸送系統故障會導致爐前料倉斷料,不能滿足鍋爐負荷下的燃料供應。
為了避免這種現象發生,可以考慮改進現有的給料工藝,減少給料環節,不采用斗式提升機,改用棧橋、皮帶,直接將料倉的料輸送到爐前料倉。同時嚴格控制燃料濕度和粒度,防止燃料結團、纏繞,并改進自動化控制手段,保證輸料系統連續穩定運行。
3、結焦和腐蝕
生物質燃料的成分和煤粉存在極大差異,尤其灰分中含有大量堿金屬鹽,這些成分導致其灰熔點較煤粉的灰熔點低,容易產生沾污結焦和腐蝕。因而生物質鍋爐產生結焦、腐蝕的工況參數與普通燃煤爐不同,應該根據燃料性質及燃燒特性的不同,對鍋爐及其輔助設備的工藝設計提出不同要求,并改進相關自動化控制使工藝運行環境符合現有設備要求。
隨著國家大氣污染排放標準的提高,因重視對廢氣排放的控制,爐內脫硫技術是控制空氣污染的有效方法。循環流化床是我國燃煤發電重要的清潔煤技術。歷經二十余年的發展,我國掌握了300MW亞臨界循環流化床鍋爐設計制造運行的系統技術,發展超臨界參數循環流化床鍋爐已經勢在必行。國家發改委自主研發超臨界600MWCFB鍋爐是當前技術的典范。
參考文獻
[1]劉強,段遠源,宋鴻偉.生物質直燃有機朗肯循環熱電聯產系統的熱力性能分析[j].中國電機工程學報,2013年26期.
【關鍵詞】生物質熱電聯產 現狀 問題 措施
生物質熱電聯產是一項十分重要的節能環保發電技術。其可以有效的提高資源的利用率。但是,當前我國現階段的生物質熱電聯產發展依然不夠成熟,針對生物質發電產業發展中的一些問題,我們做了一些研究和思考,具體內容如下。
1生物質熱電聯產發展現狀
1.1我國生物質熱電聯產發展現狀
當前,我國主要的生物質技術是丹麥的水冷振動爐排技術,由于其性能和技術設備良好,在中國生物質熱發電公司中有普遍運用。我國自主開發的技術是生物質電循環流化床技術和生物質發電水冷振動爐排技術。其中還有對一些小火電機組進行了技術改造??傮w來說,我國生物質熱電聯產的規模普遍比較小 。我國生物質熱電聯產項目,由于考慮到了生物質資源供應的可靠性,所以規定,熱電聯產的至少需要配置兩項設備,主要的一般是以 2×12 MW兩爐兩機為主。
1.2國外生物質熱電聯產發展現狀
生物質能源的開發利用是很多國家都在研究的環保能源。比如美國的能源農場,日本的陽光計劃等等。目前在很多生物質發電技術上,國外都己經十分成熟,并且得到了國際社會的推廣和使用。歐盟的生物質能源使用程度十分先進。據統計,現階段歐盟的電力總使用量中,有22%的能源是來自生物質等可再生能源。并且歐美各成員國都已經達到目標。
丹麥已經建立了大型生物質直燃發電廠,可以為全國的提供的電力供應占總量的10%。丹麥的大部分熱電聯產項目都是以生物質作為燃料,并且把過去傳統的燃煤供熱廠轉換成了生物質熱電聯產項目。 英國在發展生物質熱電聯產業上也十分投入。政府制定了關于支持生物質能技術的經濟激勵制度。 美國生物質能源的利用占總量5%。美國大力研究了生物質流化床高壓聯合氣化技術,并對生物質能源的利用技術水平十分有效。日本由于地理位置有限,能源資源十分短缺。這也致使了日本在開發利用生物質能源方面處于世界前列的水平。日本的生物質成型技術研究主要有,多頭螺桿擠壓成型機等等。
綜上可以看出,國外在利用生物質能技術方面已經十分成熟,并且已經實現了商業化和規模化經營。因此,我國在發展自己的生物質熱電聯產項目的時候可以充分的引進國外的先進資源技術及其經驗,但是,目前我國對于生物質能源的研究和發展依然有一些制約因素。
2我國生物質熱電聯產的局限性
2.1投入成本高
根據對于國外的一些生物質發電企業的研究發現,生物質發電的成本高于煤電類等能源的成本。根據我國的具體國情來說,生物質熱電聯產項目,使用的能源多數是農林秸稈,對于秸稈的利用,會增加一些專門的處理設備,并且處理過程復雜,所以投入的成本高。有一些其他的生物質燃料成本由于密度小,收集和運輸的成本大,儲藏方式比較復雜,相對的都會導致前提的投入成本提高。
2.2缺少核心技術設備
我國雖然已經自主研發了一些生物質熱電聯產的技術設備,但是,生物質發電的技術都是由國外引進的。我國引進的一些設備和技術,包括生物質燃料的收集、運輸、運行方式都與國外有很大差異。這導致,不能對引進技術設備高效利用,降低了使用利用率和經濟效益。從根本上缺乏核心的技術和設備,是我國生物質熱電聯產項目發展不成熟的根本原因。
3發展生物質熱電聯產項目的策略
3.1引進先進技術與我國具體技術相結合
生物質能源是一種新性技術能源,也是一種可再生能源。在全球環境日益惡化的今天,是整個國際社會積極探索和倡導使用的節能能源。而我國現在的生物質能源利用技術落后,所以積極引進先進的技術與我國具體的技術相結合是十分必要的。通過國際交流與合作,可以使我國盡快的跟上國際步伐,科學有效的拖動整個生物質能源的發展。大力培養相關方向的人才,利用一些國際上的資源和技術,自主研發符合我國具體情況的生物質能源技術,提高我國的生物質技術水平和發展。并且,通過國際技術交流和學習,可以積極廣泛吸收國際或國內社會的資金投入,這樣一來,為我國建設生物質熱電聯產項目收集更多資金,從而更好更快的支持我國生物質技術的發展。
3.2政府加強政策和資金支持
政府的支持對我國的生物質技術的發展重要的推動作用。所以,首先需要我國頒布關于促進生物質技術發展的法律法規,作為一些政策性指導。并且要根據我國各個地方分差異,需要具體的細化這些相關的法律條文。加強相關的立法工作是我國生物質技術發展的一個先決條件。其次,也需要政府加強對于大力促進生物質能源開發了利用的經濟激勵的相關政策。建立一個完善的經濟激勵政策,對我國的生物質能源發展會起到十分積極的促進作用。經濟激勵政策可以采取財政補貼或是低息貸款等方法。低息貸款可以是由國家或是國際的金融組織機構來提供。財政補貼可以針對生物質技術產業提供一些資金補貼和政策支持。
4結語
我國的生物質技術發展起步晚,技術落后,所以針對此現象,本文重點是將國內外的發展現狀做了一些對比,并根據我國發展生物質技術的局限性提出了一些策略支持,以期我國的生物質技術的發展能夠越來越好。
參考文獻:
[1]高慧云,肖寧.我國熱電聯產產業的發展趨[J].發電設備,2010,06:467-469.