時間:2022-03-09 14:35:53
序論:寫作是一種深度的自我表達。它要求我們深入探索自己的思想和情感,挖掘那些隱藏在內心深處的真相,好投稿為您帶來了七篇建筑抗震設計論文范文,愿它們成為您寫作過程中的靈感催化劑,助力您的創作。
建筑設計作為項目建設的基本參照和框架,需要在施工前就完成。在建筑設計的過程中,需要對環境、地理、氣候等因素加以充分考慮,其發揮的指導作用往往是非常重要的。在工程項目建設中,最關鍵的一步就是建筑設計這項工作。只要能夠保證建筑設計的科學合理、安全性過關,那么后面的具體工作就能很好地展開。因此,在建筑設計中融入抗震理念是重要的一環,可以有效地提高建筑項目的抗震性。建筑設計是建筑抗震設計的基礎,一定要實現二者的相互協作,如此才能實現最佳的抗震效果;在剛確定項目建設設計方案時,就難以再進行大范圍改動,若是在此基礎上,未能對建筑物的抗震性能加以考慮,只是通過在具體施工中通過構件設置的加固來提高建筑抗震性,這樣并未能將抗震問題很好地解決;若是在建筑設計過程中,對建筑物的抗震性加以充分考慮,做好材料設置和構件安排等方面的準備,這樣才能確保建筑物的抗震性也會得到保障。
2建筑設計中要重點關注的幾個抗震設計
(1)建筑構件和連接點處的抗震設計。如今人們的生活水平日益提高,隨之也對居住質量有了更為嚴格的要求,就施工的整體質量而言,與之直接相關聯的便是建筑構件的合理搭設和對連接點的科學設置。如今新世紀出現了許多新的工藝和材料,這樣施工就迎來了更大的挑戰。例如說建筑物的外部設計,其中會用到大理石、瓷磚等新材料,室內裝飾設計用到的則有吊頂和人工造影等技術。就實際施工而言,一定要對材料質量和施工技術有所保證,才能使建筑物的抗震性得到保障,同時要重點監督和管理其牢固性,以免在地震發生時意外墜落而造成人員的傷害。
(2)建筑物頂部的抗震設計。如今的建筑行業,普遍對頂部過高、過重的問題有所避免。因為頂部產生的壓力會導致建筑墻面也形成相應的較大壓力,這會使建筑物的抗震性和牢固性在一定程度上有所減弱。在建筑設計過程中,務必要保證建筑物整體有一個合理的重心,與此同時還要花心思用于材料選擇,選取的頂部材料要盡量是重量輕、剛度較均勻的,這樣建筑結構才能將抗震能力充分發揮出來。
(3)建筑設計中關于設計限制的問題。通常都是在建筑前期確定建筑物的抗震級別,并且這是以建筑物的實際使用情況為依據,所以要在施工過程中嚴格按照國家規定,要使建筑物的抗震性能有所保障,以免有墻體裂縫或坍塌的現象出現。
3建筑設計過程中要考慮到的抗震設計
根據上述內容,我們了解到建筑抗震設計和建筑設計之間息息相關的聯系。為了確保最大程度的抗震性,就一定要在實際施工中緊密結合起二者的聯系,同時還要在施工過程中真正融入抗震理念,如此才能使原有的建筑常規從根本上被打破,才能使建筑物抗震現狀得到徹底改善,接下來從建筑物的形狀、平面和空間三方面設計來具體闡述二者的結合。
(1)形狀設計建筑物的形狀設計也就是針對建筑進行的“體型”設計,具體包括了各部分施工技術、建筑物平面布局和立體空間等的設計。在建筑行業發展的新時代,很多方面都有所創新就建筑物思維整體外觀而言亦是如此。由此有諸多樣式的建筑外形出現,所以,在形狀設計的過程中,需要對不同外形的不同特點予以充分考慮,不同的建筑外形,也會有不同的建筑特色和實際需求,施工單位應該加以充分考慮。通常情況下,凸凹形狀的建筑體型,通??梢允菇ㄖ锏目拐鹦缘玫酱蟠筇嵘欢趯嶋H的建筑建設過程中,原有的常規形狀的建筑物已無法滿足現代化經濟發展需求,所以,建筑物整體抗震性的提高,首先需要對建筑的形狀進行科學、合理的設計。
(2)建筑物的平面設計在建筑物施工,平面設計是重要的環節,對建筑物日后的使用將起到決定作用。例如,分別作商務和居住用途的建筑物,它們在平面設計上必然存在很大差別,為了使使用需求得到進一步滿足,就一定要按照用途,來對平面構造進行科學設計;另外,為了將抗震元素融入到平面設計之中,不僅要對施工材料的堅固性加以重點考慮,還需要對構架安裝的合理性、內部各因素的協調性加以綜合考量。要想完美地實現平面設計和抗震設計的結合,就對設計者提出了很高的要求,不但要工作經驗豐富,要需要深入地研究審美觀念和抗震技術,前提還得不對內部美觀產生不利影響,在此基礎上再確??拐鹦阅艿淖畲蠡?。
(3)空間設計對建筑物進行空間設計,是在三維空間內進行的關于建筑物的豎向設計方案。因為日益加快的城市化進程和急劇增加的城市人口,增加了城市的人口壓力,所以出現的建筑物樓層愈發高。為了使土地占有面積盡量減少,在現代社會中愈發流行高層建筑,如此就對建筑物的空間設計有了更嚴格的要求。通常說來,建筑物層數越低,穩定性就越高,受到地震的損害也就會越??;反之穩定性越差,受到地震的傷害也就越大。所以,融合建筑物的空間設計和抗震設計在一起,這樣建筑物的整體抗震性才能得到保證。
4結束語
【關鍵詞】建筑設計,抗震,墻體,結構,研究
【 abstract 】 the crust activity was active in recent years, with the development of economy, the increase of population, building aseismic performance in architectural design in becomes very important. The first part of this paper from the building in the layout design problems, vertical layout design problems, building shape design problems of the three aspects such as the architectural seismic design should be paid attention to discusses. The second part of the seismic design of buildings from the roof, the design of the building should satisfy the limit control problem in two in architecture design should pay attention to the seismic question proposes the solution measures.
【 key words 】 architectural design, earthquake, wall body, structure, research
中圖分類號:TU973+.31 文獻標識碼:A文章編號:
在建筑設計中是否對抗震予以考慮,起著直接的控制主導作用。對于建筑設計來說,當設計完成后,在結構上就很難有較大的修改,在原則上結構設計此時也只能依照建筑設計的相關要求。如果一個項目的建筑師在最初的建筑方案中、以及在初步的設計階段等中可以較多地考慮抗震等因素,此時結構工程師便可以在結構構件系統方面進行有效合理的布置,如果建筑結構在質量和剛度分布方面等的抗震作用和結構受力與變形能夠均勻協調,那么在一定程度上可以改善并提升建筑結構的抗震性能及抗震承載力;如果建筑師所提供的建筑設計中并沒對抗震要求多加考慮,那么就會給結構的抗震設計帶來很多不必要的麻煩與困難,此時,抗震的設計受到了建筑布置的制約、限制。有時增大構件的配筋量或者截面是為了提高構件的抗震承載力,在一定程度上由此可能會造成不必要的浪費。由此可見,在建筑設計中能否對抗震要求加以考慮,對整個建筑都起著十分重要的作用。
一、建筑設計在建筑抗震設計中應該考慮的關鍵性問題
1、建筑在平面布置設計方面的問題
建筑物在平面的布置是建筑設計中非常重要的組成部分,它能夠直接的反映建筑的使用功能和要求。柱子的間距、對內墻的布置、以及活動空間的面積、樓、電梯的空間分布,房間的分布及數量都需要在建筑的平面設計中明確的展現出來。另外,由于不同建筑物在使用功能方面存在很大的差異,所以對每個樓層都要進行不同的布置,建筑在平面上的墻體是由的填充墻、以及具有相應強度和剛度的非承重內隔墻共同組成的,這些墻體在布置當中存在不對稱的現象,墻體與柱子在分布上的不對稱及不協調,對地震時建筑物的抗震作用發生扭轉,不利于建筑的抗震。有些建筑物將剛度很大的電梯井筒等布置在建筑物平面的角部或者平面的側面,一旦地震發生,對靠近電梯一側的建筑物將產生十分嚴重的破壞。這是由于電梯井筒具有很大的抗側力剛度,對地震產生很強的吸引作用。
2、建筑在豎向布置設計方面的問題
建筑在豎向布置方面的設計問題主要反映在在建筑設計中的建筑的樓層結構質量以及其剛度分布的設計上。這個問題無論是單層建筑還是多層建筑,無論是高層建筑還是超高層建筑中等都是一個比較突出的問題,存在這個問題的主要原因在于,由于建筑的使用功能不同,所以對樓層的結構質量與剛度分布的要求也各不相同。比如說,如果建筑下面的幾層或底層是商場及購物中心,那么在建筑上便提出了大空間,大柱距的要求;如果相對較高的樓層是寫字樓或者公寓,則要求以墻為主,用柱較少;部分建筑設計還設計的有面積相對很大的公共天井大廳、在不同樓層還都設有展廳、大會議室等。
建筑在使用功能方面的不同,便形成了建筑物在高度分布上對質量和剛度的要求不同,這些不同在一定程度可能會導致嚴重的不均勻與不協調。上下相鄰間的樓層在質量和剛度方面相差過大的問題十分突出,容易發生突變。在剛度較差的樓層由于其在抗震承載力方面存在的不足以及容易形成很大的變形形成薄弱層。在建筑設計中這是必須予以高度重視的嚴重問題。在實際的設計當中,由于建筑在使用功能方面存在不同,上下相鄰樓層在墻體上可能會出現無法對齊的現象,由于柱子不對齊,所以墻體就無法實現連續;另外如果是上層墻體多,下層墻體少;上層有柱子,下層無柱子等,也容易阻擋地震力的傳遞;做抗震用的剪力墻等設置不能夠直通到底層的、剪力墻在布置時不對稱或者數量較少等都給建筑物在抗震方面帶來不利影響。由多次大地震的數據表明,由于建筑物的豎向樓層剛度過大會給建筑物帶來更大的破壞,甚至會引起整個樓層的坍塌。
3、建筑在體型設計方面的問題
建筑體型主要指的是建筑物的平面形狀以及其主體在空間形狀方面的設計。地震事實證明,平面形狀復雜的建筑物更易遭受迫害,比如說在平面上存在外凸和凹進的建筑、以及側翼伸懸過多的建筑等在地震中遭受的破壞程度更大。以我國的唐山大地震為例,地震中平面形狀相對簡單而且規則的建筑,在地震中遭受到重創的機率比其他建筑要少,部分平面形狀簡單的建筑在地震中甚至可以完好無損的保留下來。在高度立體空間上形狀相對復雜以及不規律等在地震中等遭受的震害更大。特別是建筑結構的突變更容易造成建筑的破壞。所以,在對建筑體型進行設計時,應該在平面及空間上采用形狀相對簡潔及規則的形狀,比如說,圓形、矩形等都是抗震效果較好的體型;盡量少用外凸或者內凹的形態。
二、建筑設計中應該關注的抗震問題
1、屋頂建筑中的抗震設計問題
在屋頂中建筑中往往存在過高及過重等問題。這就加大的建筑物的變形程度,在一定程度也就削弱了抗震作用,對屋頂建筑以及其下建筑的抗震等都不利。如果屋頂建筑和下部建筑的重心出現不在一條線上的情況、或者屋頂建筑的抗側力墻體與下部建筑的抗側力墻體不能形成連續時,便會削弱整個建筑物的抗震作用。因此,在設計屋頂建筑的時候,應該盡量降低其高度,或者采用比較輕便的新型建筑材料進行裝飾造型。
2、建筑上應滿足的設計限值控制問題
我國現行的《建筑抗震設計規范》中對房屋建筑在抗震方面提出了一定的要求。這些規定,都是建筑在設計中應該遵循的。第一,對房屋建筑在高度和層數方面做了規定。比如說:如果設防的烈度為8度,此時由粘土磚建造的多層房屋的總高度應該控制在18m內,樓層數則應該控制在6層以內;而底層框架多層的磚房在總高度方面要控制在16m以內,樓層數要小于等于5層;如果采用的鋼筋混凝土結構的框架房屋,此時的總高度則應該控制在40m內;采用框架抗震墻的高層建筑也應把總高度控制在100m以內。在目前的實際設計當中,或對總高度或對總層數都進行了超規,有的在具體的建筑設計雖然對總高度未進行超規,但對房屋在高寬比等方面進行了超過規定。所有諸如上述超規,對建筑物在抗震安全方面都可能帶來不利影響,特別是在高寬比過大的多層中產生的不利影響更大。這此情況下,房屋在整體上就存在抗震穩定等問題。第二,便是對房屋在抗震橫墻的間距以及局部墻體的尺寸等方面的限值以及控制。在對建筑的平立面進行布置設計時,要根據具體的實際震害經驗來進行設計控制規定,為建筑設計在抗震方面打好堅實的基礎。
三、總結
總而言之,建筑設計是建筑抗震設計中的一個重要組成部分,建筑設計同建筑抗震設計之間有著十分密切的關系。它是建筑抗震設計中的重要的基礎部分。一個良好的建筑抗震設計,必須是與結構設計和建筑設計之間形成良好的相互配合協作關系,是在共同考慮抗震設計的基礎上協同完成的。因此,在建筑設計中要充分重視建筑抗震設計,另外也要在建筑抗震設計中,注重建筑設計作用的發揮。
【參考文獻】
[1]張新宇,從汶川地震看建筑設計與結構的結合[期刊論文]-山西建筑,2009(22)
[2]何譽,建筑設計在建筑抗震設計中的探討[J]. 中國科技財富, 2010(22)
[3]李建平, 建筑設計在建筑抗震設計中的作用[J]. 安徽建筑, 2009,11(5)
關鍵詞:高層建筑;抗震;結構設計;探討
中圖分類號:[TU208.3]文獻標識碼:A文章編號:
1 高層建筑發展概況與存在問題
80年代,是我國高層建筑在設計計算及施工技術各方面迅速發展的階段。各大中城市普遍興建高度在100m左右或100m以上的以鋼筋為主的建筑,建筑層數和高度不斷增加,功能和類型越來越復雜,結構體系日趨多樣化。比較有代表性的高層建筑有上海錦江飯店,它是一座現代化的高級賓館,總高153.52m,全部采用框架一芯墻全鋼結構體系,深圳發展中心大廈43層高165.3m,加上天線的高度共185.3m,這是我國第一幢大型高層鋼結構建筑。進入90年代我國高層建筑結構的設計與施工技術進入了新的階段。不僅結構體系及建筑材料出現多樣化而且在高度上長幅很大有一個飛躍。深圳于1995年6月封頂的地王大廈,81層高,385.95m為鋼結構,它居目前世界建筑的第四位。
我國高層建筑的結構材料一直以鋼筋混凝土為主。隨著設計思想的不斷更新,結構體系日趨多樣化,建筑平面布置與豎向體型也越來越復雜,出現了許多超高超限鋼筋混凝土建筑,這就給高層建筑的結構分析與設計提出了更高的要求。尤其是在抗震設防地區,如何準確地對這些復雜結構體系進行抗震分析以及抗震設計,已成為高層建筑研究領域的主要課題之一。
2 建筑抗震的理論分析
2.1 建筑結構抗震規范
建筑結構抗震規范實際上是各國建筑抗震經驗帶有權威性的總結,是指導建筑抗震設計(包括結構動力計算,結構抗震措施以及地基抗震分析等主要內容)的法定性文件它既反映了各個國家經濟與建設的時代水平,又反映了各個國家的具體抗震實踐經驗。它雖然受抗震有關科學理論的引導,向技術經濟合理性的方向發展,但它更要有堅定的工程實踐基礎,把建筑工程的安全性放在首位,容不得半點冒險和不實。正是基于這種認識,現代規范中的條文有的被列為強制性條文,有的條文中用了“嚴禁,不得,不許,不宜”等體現不同程度限制性和“必須,應該,宜于,可以”等體現不同程度靈活性的用詞。
2.2高層建筑結構抗震結構設計分析
設計階段的結構動力特性分析。高層建筑進入初步設計階段后,首先按方案階段確定的結構布置進行計算分析。計算模型取自±0. 000至塔頂,假定樓板為平面內剛度無限大,其地震反應分析基本參數列于,以及可以看出,隨著樓層高度的增加,結構X方向(縱向)自振周期及地震力基本正常,而結構Y方向(橫向)自振周期偏長、結構剛度偏低,對應于水平地震作用的剪力較小,結構的抗震能力偏弱,結構偏于不安全。為增加Y方向(橫向)的抗側移剛度,提高其抗震能力,在現代高層建筑的設計中,可以在建筑核心筒的兩側增設四道剪力墻。根據《高層建筑混凝土結構技術規程》(JGJ3-2002)和《建筑抗震設計規范》(GB50011-2001),抗震設計時,框架-剪力墻結構中剪力墻的數量必須滿足一定要求,在地震作用時剪力墻作為第一道抗震防線必須承擔大部分的水平力。但這并不意味著框架部分可以設計得很弱,而是框架部分作為第二道防線必須具備一定的抗側力能力,在大震作用下第一道抗震防線剪力墻遭受破壞時,整個結構仍具備一定的抵抗能力,不至于立即破壞倒塌,這就需要在結構計算時,對框架部分所承擔的剪力進行適當調整。
3結構抗震設計方法探討。
3.1結構抗震設計的基本步驟。
對建筑抗震的三個水準設防要求,是通過“兩階段”設計來實現的,其方法步驟如下:第一階段設計:第一步采用與第一水準烈度相應的地震動參數,先計算出結構在彈性狀態下的地震作用效應,與風、重力荷載效應組合,并引入承載力抗震調整系數,進行構件截面設計,從而滿足第一水準的強度要求;第二步是采用同一地震動參數計算出結構的層間位移角,使其不超過抗震規范所規定的限值;同時采用相應的抗震構造措施,保證結構具有足夠的延性、變形能力和塑性耗能,從而自動滿足第二水準的變形要求。第二階段設計:采用與第三水準相對應的地震動參數,計算出結構(特別是柔弱樓層和抗震薄弱環節)的彈塑性層間位移角,使之小于抗震規范的限值,并采用必要的抗震構造措施,從而滿足第三水準的防倒塌要求。
3.2結構抗震設計方法
3.2.1基礎的抗震設計
基礎是實現高層建筑安全性的重要條件。我國高層建筑通常采用鋼筋混凝土連續地基梁形式,在基礎梁的設計中,為充分發揮鋼筋的抗拉性和混凝土的抗壓性的復合效應,把設計重點放在梁的高度和鋼筋的用量上,在鋼筋的布置上采用主筋、腹筋、肋筋、基礎筋、基礎輔筋5種鋼筋的結合。為防止基礎鋼筋的生銹,一方面采用耐酸化的混凝土,另一方面是增加鋼筋表面的保護層厚度,以抑止鋼筋的腐蝕。高層建筑基礎處理的另一個特色是鋼制基礎結合墊塊的應用,它是高層建筑上部結構柱與基礎相連的重要結構部件。它的功能之一是使具有吸濕性的混凝土基礎和鋼制結構柱及上部建筑相分離,有效防止結構體的銹蝕,確保部件的耐久性。
3.2.2鋼結構骨架的抗震設計
采用鋼框架結合點柱壁局部加厚技術來提高結構抗震性能。一般鋼框架結構,梁和柱結合點通常是柱上加焊鋼制隅撐與梁端用螺栓緊固連接。在這種方式下,鋼柱必須在結合部被切斷,加焊隅撐后再結合,這樣做技術上的不穩定性和材料品質不齊全的可能性很大,而且遇到大地震,鋼柱結合部折斷的危險性很大。鑒于此,可以首先該結構的梁柱采用高密度鋼材,以發揮其高強抗震、抗拉和耐久性。柱壁增厚法避免斷柱形式,對二、三層的獨立住宅而言,結構柱可以一貫到底,從而解決易折問題。與梁結合部柱壁達到兩倍厚,所采用的是高頻加熱引導增厚技術。在制造過程中品質易下降的鋼管經過加熱處理反而使材料本來所具有的拉伸強度得以恢復。對于地震時易產生的應力集中,柱的增厚部位能發揮很大的阻抗能力,從而提高和強化了結構的抗震性。
3.2.3墻體的抗震設計
“三合一”外墻結構體系,首先是由日本專家設計應用的,采用外墻結構柱與兩側外墻板鋼框架組合形成的“三合一”整體承重的結構體系。該體系不僅僅用柱和梁來支撐高層建筑,而是利用墻體鋼框架與結構柱結合,有效地承受來自垂直方向與水平方向的荷載。由于外墻板鋼框架的補強作用,該做法可以較好地發揮結構柱設計值以外的補強承載力。加強了對豎向地震力及雪荷載的抵抗能力,最大限度地發揮其抗震優勢;另一方面,由于外墻板鋼框架與內部斜拉桿所構成“面”承載與結構柱的結合并用,也提高了整體抗側推力和抗變形能力。它的抗水平風載和地震力的能力比單純墻體承重體系提高30%左右。
4增大結構抗震能力的加固與改造技術
建國幾十年來,我國的抗震加固與改造技術得到了飛速發展。1976年唐山地震后,砌體結構抗震加固的問題日益突出,砌體結構抗震性能不好:砌體墻體抗震能力、變形性能的不足、房屋整體性不好。因此,增大墻體抗震性能的外包鋼筋混凝土面層、鋼筋網水泥砂漿面層加固技術及增大結構整體性的壓力灌漿加固技術、增設圈梁(構造柱)加固技術、拉結鋼筋加固技術;通過增設抗震墻來降低抗震能力薄弱構件所承受地震作用的增設墻體技術等應運而生。目前該技術廣泛用于砌筑墻體的加固。
常見的混凝土柱加固技術有加大截面加固技術、外包鋼加固技術、預應力加固技術、改變傳力途徑加固技術、加強整體剛度加固技術、粘鋼加固技術以及碳纖維加固技術等。這些絕大部分都是經過長期實踐檢驗可靠性比較高的技術,已收入國家標準《混凝土結構加固技術》(cecs25—90)。此類技術不僅有比較充分的理論依據,規范還提供了詳細的計算公式。如混凝土柱的外包鋼法加固技術,開始階段的計算方法是分別計算混凝土柱和外包鋼,外包鋼按鋼結構計算:當外包裝的綴板加密并出現濕式的施工方法時,其計算按整體構件考慮;當綴板施加。
5結語
高層建筑已經逐漸成為當前時代建筑發展的主流建筑形態之一,對于高層建筑,其抗震效能的分析一直是國內外建筑抗震設計分析的研究熱點,而最直接最有效的抗震措施就是在建筑設計階段進行結構抗震設計,只有從高層建筑物內部實施結構抗震,才能夠從根本上提高高層建筑的抗震效能。本論文從高層建筑結構設計的角度進行了抗震分析,對于具體的高層建筑抗震設計具有一定指導和借鑒意義。
參考文獻:
[1]李忠獻.高層建筑結構及其設計理論[M].北京:科學出版社,2006.
關鍵詞:高層建筑;混凝土房屋;抗震設計;抗震設防
Abstract: This article researches and analyzes the seismic design of the tall reinforced concrete building, according to the author’s practical experience and summarized relevant materials,.
Key words: high-rise building; concrete building; seismic design; seismic fortification
中圖分類號:TU3文獻標識碼:A 文章編號:2095-2104(2012)
在建筑工程項目建設中,設計階段是整個工程最為關鍵的一個環節,在設計中要考慮到多方面的因素。本文結合工作實踐對高層建筑結構抗震設計進行理論上的研究,從設計理念、設計原則到設計方法進行了探討,雖然有些粗淺,希望對同行們有一定的參考作用。
地震是人類在繁衍生息、社會發展過程中遇到的一種可怕的自然災害。強烈地震常常以其猝不及防的突發性和巨大的破壞力給社會經濟發展、人類生存安全和社會穩定、社會功能帶來嚴重的危害。據統計,歷史上各種自然災害曾毀滅了世界各地 52 個城市,其中因地震而毀滅的城市有 27 個。地震之外的其它各種災害,如水災、火災、火山噴發、風災、沙災、旱災等毀滅的城市為 25 座。因此,地震占災害總數的 52%??梢姷卣馂暮Υ_系“群害之首”。研究表明,在地震中造成人員傷亡和經濟損失最主要的因素就是房屋倒塌及其引發的次生災害(約占 95%)。無數次的震害告訴我們,抗震設計是防御和減輕地震災害最有效、最根本的措施。
1 建筑抗震的理論分析
1.1 建筑結構抗震規范 建筑結構抗震規范實際上是各國建筑抗震經驗帶有權威性的總結,是指導建筑抗震設計(包括結構動力計算,結構抗震措施以及地基抗震分析等主要內容)的法定性文件它既反映了各個國家經濟與建設的時代水平,又反映了各個國家的具體抗震實踐經驗。它雖然受抗震有關科學理論的引導,向技術經濟合理性的方向發展,但它更要有堅定的工程實踐基礎,把建筑工程的安全性放在首位,容不得半點冒險和不實。正是基于這種認識,現代規范中的條文有的被列為強制性條文,有的條文中用了“嚴禁,不得,不許,不宜”等體現不同程度限制性和“必須,應該,宜于,可以”等體現不同程度靈活性的用詞。
1.2 抗震設計的理論 擬靜力理論。擬靜力理論是 20 世紀 10~40 年展起來的一種理論,它在估計地震對結構的作用時,僅假定結構為剛性,地震力水平作用在結構或構件的質量中心上。地震力的大小當于結構的重量乘以一個比例常數(地震系數)。反應譜理論。反應譜理論是在加世紀 40~60 年展起來的,它以強地震動加速度觀測記錄的增多和對地震地面運動特性的進一步了解,以及結構動力反應特性的研究為基礎,是加理工學院的一些研究學者對地震動加速度記錄的特性進行分析后取得的一個重要成果。動力理論。動力理論是 20 世紀 70-80 年廣為應用的地震動力理論。它的發展除了基于 60 年代以來電子計算機技術和試驗技術的發展外,人們對各類結構在地震作用下的線性與非線性反應過程有了較多的了解,同時隨著強震觀測臺站的不斷增多,各種受損結構的地震反應記錄也不斷增多。進一步動力理論也稱地震時程分析理論,它把地震作為一個時間過程,選擇有代表性的地震動加速度時程作為地震動輸入,建筑物簡化為多自由度體系,計算得到每一時刻建筑物的地震反應,從而完成抗震設計工作。
2 高層建筑結構抗震設計
2.1 抗震措施 在對結構的抗震設計中,除要考慮概念設計、結構抗震驗算外,歷次地震后人們在限制建筑高度,提高結構延性(限制結構類型和結構材料使用)等方面總結的抗震經驗一直是各國規范重視的問題。當前,在抗震設計中,從概念設計,抗震驗算及構造措施等三方面入手,在將抗震與消震(結構延性)結合的基礎上,建立設計地震力與結構延性要求相互影響的雙重設計指標和方法,直至進一步通過一些結構措施(隔震措施,消能減震措施)來減震,即減小結構上的地震作用使得建筑在地震中有良好而經濟的抗震性能是當代抗震設計規范發展的方向。而且,強柱弱梁,強剪弱彎和強節點弱構件在提高結構延性方面的作用已得到普遍的認可。
2.2 抗震設計理念 我國 《建筑抗震規范》(GB50011-2001)對建筑的抗震設防提出“三水準、兩階段”的要求,“三水準”即“小震不壞,中震可修,大震不倒”。當遭遇第一設防烈度地震即低于本地區抗震設防烈度的多遇地震時,結構處于彈性變形階段,建筑物處于正常使用狀態。建筑物一般不受損壞或不需修理仍可繼續使用。因此, 要求建筑結構滿足多遇地震作用下的承載力極限狀態驗算,要求建筑的彈性變形不超過規定的彈性變形限值。當遭遇第二設防烈度地震即相當于本地區抗震設防烈度的基本烈度地震時,結構屈服進入非彈性變形階段,建筑物可能出現一定程度的破壞。但經一般修理或不需修理仍可繼續使用。因此,要求結構具有相當的延性能力(變形能力)不發生不可修復的脆性破壞。當遭遇第三設防烈度地震即高于本地區抗震設防烈度的罕遇地震時,結構雖然破壞較重,但結構的非彈性變形離結構的倒塌尚有一段距離。不致倒塌或者發生危及生命的嚴重破壞,從而保障了人員的安全。因此,要求建筑具有足夠的變形能力,其彈塑性變形不超過規定的彈塑性變形限值。
三個水準烈度的地震作用水平,按三個不同超越概率(或重現期)來區分的:多遇地震:50 年超越概率 63.2%,重現期 50 年;設防烈度地震(基本地震):50 年超越概率 10%,重現期 475 年;罕遇地震:50 年超越概率 2%-3%,重現期 1641-2475 年,平均約為 2000年。對建筑抗震的三個水準設防要求,是通過“兩階段”設計來實現的,其方法步驟如下:第一階段:第一步采用與第一水準烈度相應的地震動參數,先計算出結構在彈性狀態下的地震作用效應,與風、重力荷載效應組合。并引入承載力抗震調整系數。進行構件截面設計,從而滿足第一水準的強度要求;第二步是采用同一地震動參數計算出結構的層間位移角,使其不超過抗震規范所規定的限值;同時采用相應的抗震構造措施,保證結構具有足夠的延性、變形能力和塑性耗能,從而自動滿足第二水準的變形要求。第二階段:采用與第三水準相對應的地震動參數,計算出結構(特別是柔弱樓層和抗震薄弱環節)的彈塑性層間位移角,使之小于抗震規范的限值。并采用必要的抗震構造措施,從而滿足第三水準的防倒塌要求。
2.3 抗震設計方法 我國的《建筑抗震設計規范》(GB50011-2001)對各類建筑結構的抗震計算應采用的方法作了以下規定:高度不超過 40m,以剪切變形為主且質量和剛度沿高度分布比較均勻的結構,以及近似于單質點體系的結構,可采用底部剪力法等簡化方法;除 1 款外的建筑結構,宜采用振型分解反應譜方法;特別不規則的建筑、甲類建筑和限制高度范圍的高層建筑,應采用時程分析法進行多遇地震下的補充計算,可取多條時程曲線計算結果的平均值與振型分解反應譜法計算結果的較大值。
3 結語
要使工程建設真正達到能夠減輕以至避免地震災害,把握好抗震設計關是減輕地震災害的根本措施。
參考文獻:
[1]朱鏡清.結構抗震分析原理[M].地震出版社,2002.11.
[2]鄭文忠,王英.對既有房屋套建增層改造的認識與思考[J].工業建筑,2008.6.
[3]計靜.套建增層預應力鋼骨混凝土框架抗震性能與設計方法研究.哈爾濱工業大學博士學位論文,2008.
關鍵詞:鋼筋混凝土框架;強柱弱梁;抗震
中圖分類號:TU323文獻標識碼: A 文章編號:
引言
鋼筋混凝土框架體系,隨著材料性能和制作工藝的不斷提高和改善,應用范圍逐漸擴大。其建筑布置比較靈活,可以設計成具有較大空間的各類建筑。但是,由于其整體結構剛度小、冗余度低, 造成其抵抗強震和抗倒塌能力弱,在強震中易造成較大損失, 震后修復困難, 修復費用較高。鑒于以上原因,為了在地震區建設符合“小震不壞、中震可修、大震不倒”設防水準的框架結構房屋,《建筑抗震設計規范》做了相應的規定和要求, “強柱弱梁”就是保證“中震可修、大震不倒”的重要技術措施之一。由于框架結構一般不具備多道抗震防線, 因此延性框架塑性鉸要求發生在不影響整體穩定的梁上,使柱得到保護,從而保證整體結構的穩定, 做到“大震不倒”,降低危害。
1國內對“強柱弱梁”理念的研究現狀
“強柱弱梁”是鋼筋混凝土框架結構抗震設計的基本原則之一,即在地震作用下,梁先于柱發生破壞。 因為梁破壞通常是局部的,且如果梁端出現塑性鉸可以消耗掉一部分地震能量,從而更好的保證整個結構的安全。 而柱破壞則可能導致結構整體的倒塌,后果嚴重。我國現行《建筑抗震設計規范》也對“強柱弱梁”的實現做出了具體規定,即除框架頂層和柱軸壓比小于0.15及框支梁與框支柱的節點外,對于考慮地震作用組合的一、二、三級框架柱,柱端組合的設計彎矩應乘以相應的增大系數。
清華大學、西安交通大學、北京交通大學土木工程專家組[1]通過對汶川地震的震害分析指出: 由于樓板的增強作用、框架梁上增加砌體或填充墻的增強作用、增大上部結構的剛度等,使得框架梁或屋蓋的實際剛度增大, 在實際框架結構震害中, 很少看到“ 強柱弱梁”型破壞。由于地震的復雜性,現澆樓板的影響和鋼筋屈服時的超強等因素的影響, 難以實現“ 強柱弱梁”的破壞機制, 這也引出應該根據這些因素來提高柱端彎矩增大系數從而達到梁鉸機制。從單質點體系理想的荷載- 變形關系曲線[2]出發: “ 強柱弱梁”原則是延性框架結構設計的關鍵, 圍繞這個問題來進行“ 強柱弱梁”設計, 那么“ 強柱弱梁”設計原則不是通過增加柱梁剛度比,而是通過降低梁的相對強度、提高柱的相對強度來實現的。從構件層次和結構體系層次對“ 強柱弱梁”進行概率分析[3]:抗震等級越高,柱彎矩增大,系數越大,軸壓比限值越小,梁的界限受壓區高度越小, 從而使柱端形成塑性鉸的概率減小, 梁端出現塑性鉸的概率增大, 從而增大了“ 強柱弱梁”的形成概率。通過對“ 強柱弱梁”的影響因素的分析[4]:為了滿足“ 強柱弱梁”的抗震設計要求,柱端設計彎矩均應按梁端截面實配鋼筋的抗震受彎承載力進行調整放大,而且在進行抗震設計時, 應考慮框架梁的塑性內力重分布,對梁端負彎矩進行適當調幅,同時應采用柱邊緣所對應的梁端彎矩設計值進行截面配筋及裂縫驗算。另外需要合理控制框架梁底部鋼筋伸入框架柱的數量,來避免鋼筋過多帶來的超強剛度的影響,尤其應該考慮現澆樓板及其配筋對梁端截面受彎承載力的影響。
2 影響“強柱弱梁”實現的因素
“ 強柱弱梁”措施作為建筑抗震設計的一項重要設計原則, 在工程設計中占有重要的地位和作用,其最終目的就是形成延性框架設計, 從而為保證生命和財產的安全做貢獻, 將災害損失降到最低。綜上所述,影響“ 強柱弱梁”破壞機制的因素眾多,其中關鍵四個因素如下:
Ⅰ)現澆樓板的影響。在現澆結構中,樓板是與框架梁一起澆筑的, 兩者結合良好,共同工作的能力強,樓板可以顯著的提高框架梁的抗彎剛度和抗彎承載力。
Ⅱ)填充墻的影響。填充墻是一個最復雜因素, 對結構的剛度影響很大,如果是把強柱弱梁作為包括填充墻在內的整體結構抗震的屈服機制設計目標時,那么預期出鉸的框架梁上則不應設置填充墻,或者在填充墻與框架柱之間留有足夠的縫隙。
Ⅲ) 鋼筋超配置的影響。鋼筋超配會引起梁端超強,原因有以下幾點:一是實際采用的鋼筋屈服強度比設計的鋼筋屈服強度高; 二是鋼筋屈服后的應變硬化指標較高; 三是設計配筋構造, 滿足最大或最小構造要求,導致的梁端抗彎承載力提高; 四是設計人員為了保證安全系數,人為地加大梁的配筋率。
Ⅳ)軸壓比的影響。在進行結構設計時,多是根據軸壓比來確定柱的截面尺寸,規范中為保證柱有一定的延性,對柱的軸壓比規定了上限。 在設計中,由于建筑美觀或者降低造價等各方面的要求,設計人員常常在滿足軸壓比的前提下盡量縮小柱截面尺寸,尤其是在結構底層柱。 因此規范中規定的軸壓比限值過高,框架柱截面尺寸偏小,也是造成實際震害中出現“強梁弱柱”的原因之一。
3 實現“強柱弱梁”的討論
通過以上分析可知, 若想實現“強柱弱梁”破壞機制,我們應該綜合各種因素來分析,使“ 強柱弱梁”原則更加明確化、具體化、規范化。
首先,嚴格控制梁端鋼筋的超配。利用概率分析的方法來確定截面超配筋對梁或柱的影響,來具體確定截面的超配筋系數以及控制伸入框架柱鋼筋的數量, 而且還要明確的確定彎矩的調幅系數或參數,以便滿足結構的“ 強柱弱梁”的設計要求, 從而最終確定最佳的柱端彎矩增大系數,減少過多鋼筋在梁柱節點區的錨固,保證節點區的混凝土的質量。
其次,應具體考慮現澆樓板對“ 強柱弱梁”機制的具體影響來提取影響參數。這里主要是綜合考慮剪跨比、軸壓比、橫向梁剛度、板內配筋情況等因素等效來確定板的有效寬度。根據最大層間位移角來計算板的有效寬度,即:T形梁的有效翼緣寬度, 主要通過考慮樓板對梁端抗負彎矩能力的貢獻、對受彎承載力的影響以及結構內力重分布的影響,來確定柱端彎矩增大系數。
此外,增加柱子的非彈性變形和耗能能力。按照現行抗震規范進行框架結構設計,無法保證框架在地震中一定不發生柱鉸破壞,而對“強柱弱梁”的設計規定也主要是為了防止框架發生倒塌。若框架柱有足夠的變形和耗能能力,就可以一定程度上防止框架發生倒塌。 增加框架柱抗震能力的措施有很多,如采用鋼套管或纖維增強復合塑料等材料對框架柱進行側向約束或者采用高強螺旋箍筋,增加對柱核心混凝土的約束,提高柱的抗倒塌能力;另外,在技術條件和工程造價允許的前提下,采用型鋼混凝土柱、鋼管混凝土柱等組合結構柱,亦可大大提高結構的抗震性能。
參考文獻:
[1] 清華大學、西安交通大學、北京交通大學土木工程結構專家組. 汶川大地震建筑震害分析[ J] . 建筑結構學報, 2008, 29( 4) : 1- 9.
[2] 朱少云, 曹維琪. “強柱弱梁”設計原則在建筑結構設計中的應用[ C] . 中國建筑學會. 第八屆全國混凝土結構基本理論及工程應用學術論文集, 重慶: 重慶大學出版社, 2004: 356- 359.
關鍵詞 碳纖維軸向承載力抗震加固
中圖分類號:TU528.571文獻標識碼: A 文章編號:
一.概述
粘帖CFRP片材加固修復混凝土結構的技術,主要用于鋼筋混凝土柱的抗震加固、梁柱的受剪加固、梁板的受彎加固、以及裂縫和耐久性修補。對于鋼筋混凝土柱粘帖CFRP片加固,國內外大量的試驗和理論分析均表明,目前采用一般粘帖CFRP片材加固鋼筋混凝土柱的方法,在鋼筋混凝土柱粘帖CFRP片材后,使柱中混凝土處于三向受壓狀態,提高了混凝土的抗壓強度及極限壓應變,從而提高鋼筋混凝土柱軸壓承載力及延性。與約束混凝土的機理類似,鋼筋混凝土柱粘帖CFRP片材加固后使柱中混凝土處于約束狀態,由于CFRP片材是線彈材料,使其產生的約束力是持續增長的,直至碳纖維拉斷,混凝土破壞。可以認為:當鋼筋混凝土柱粘帖CFRP片材加固軸向應力超出混凝土的抗壓強度后,應力---應變關系呈線性增長,混凝土的應力和應變同時達到最大值,呈現了CFRP片材是線彈性材料約束混凝土的特點。[1]
二、碳纖維加固混凝土柱的原理
普通混凝土結構在使用一定的年限后,混凝土腐蝕、鋼筋銹蝕,承載能力下降;一部分新建和在建的工程,由于設計或施工不當,有些工程使用功能改變,荷載增加或者提高建筑物的抗震設防等級;由于種種原因造成停建爛尾工程,又重新啟動的工程等等,這些都需要對結構進行加固。使用建筑結構膠在混凝土表面粘帖CFRP片材材料進行加固修復混凝土結構,《碳纖維片材加固修復混凝土結構技術規程》中對鋼筋混凝土柱的加固從施工到設計都有詳細的規定。
《碳纖維片材加固修復混凝土結構技術規程》中要求粘帖CFRP片材加固修復混凝土結構應由熟悉該技術施工藝的專業施工隊伍完成,并應有加固修復和施工技術措施。保證施工質量的關鍵是遵循工序要求,施工時應考慮環境溫度、濕度對結構膠固化的影響。施工過程中,為保證加固質量,應從施工準備開始對需要加固的構件進行表面修復、清理并保持干燥,應按產品供應商提供的工藝規定進行配置和涂抹結構膠。粘帖CFRP片材還應符合《碳纖維片材加固修復混凝土結構技術規程》中有關條款要求。施工中應注意安全,遠離電器設備及電源,做好防護措施。在開始施工之前,應確認CFRP片材及配套的結構膠的新產品合格證、產品出廠質量檢驗報告,各項性能指標應符合《碳纖維片材加固修復混凝土結構技術規程》中的檢驗要求。[2]
改善鋼筋混凝土柱最方便最有效的方法就是對核心區混凝土和保護層混凝土進行有效的約束,提高混凝土自身的變形能力。《碳纖維片材加固修復混凝土結構技術規程》的出現使得這一方法變得簡單易行。CFRP片材包裹在鋼筋混凝土柱,混凝土受到了外包纖維的有效約束,極大改善了混凝土的變形能力;同時外包纖維限制了裂縫的發展,在纖維拉斷前保護層的混凝土不剝落,有效防止了粘結構破壞的發生。
為了進行CFRP約束混凝土構件的力學性能和承載力設計方法的研究,必須確定混凝土在CFRP生材料約束情況下的應力―――應變關系。國內外許多學者對CFRP約束混凝土的關系進行了研究,基于試驗結果分析,建立了CFRP約束混凝土關系指數曲線+直線曲線的模型。
三、碳纖維加固鋼筋混凝土柱的軸向承載力計算抗震加固[3]
我國現行鋼筋混凝土設計規范及抗震設計規范中,對于鋼筋混凝土結構的抗震措施,主要針對不同的抗震等級,通過內力調整和限制軸壓比倆方面來控制。許多研究者指出:軸壓比影響柱的延性及破壞形式。當軸向壓力較小時,鋼筋混凝土柱為受拉破壞,主要是由于受拉側鋼筋先達到屈服而引起的,表現出一定的延性。隨著軸向壓力的增加,柱的延性不斷降低。當軸力超過界限軸力時,受拉側鋼筋達不到受屈服,構件的破壞主要是由于混凝土壓潰或主筋的壓曲造成的,因此延性很小。這就是抗震結構中限制鋼筋混凝土柱軸壓比的原因。在實際加固改造工程中,常常會遇到框架柱軸壓比超出規范限值得情況。此時采用CFRP約束混凝土的關系環向包裹對柱進行約束,可以提高柱的混凝土抗壓強度,從而降低軸壓比。對于外粘帖纖維布弱約束鋼筋混凝土柱計算;外粘纖維布弱約束鋼筋混凝土柱軸壓構件,其軸承載力按下列公式計算:N0.9(
對圓形載面建議按:式中: 為外粘纖維布弱約束鋼筋混凝土柱軸壓構件心抗壓強設計值; 為外粘纖維布弱約束鋼筋混凝土柱軸向構件抗壓強設計值; 為外粘纖維布弱約束鋼筋混凝土柱軸向構件抗拉強設計值;外粘纖維布弱約束鋼筋混凝土柱軸向構件抗拉強設計值;A為加固柱截面的面積。一般情況下 不應大于的1.5倍,黨有可靠依據時混凝土強度的提高幅值可適當提高。截面的半徑或高度應小于1.0m,對矩形截面的高寬比h/b應小于1.5。
為確保核心區混凝土得到有效的約束,我國現行鋼筋混凝土設計規范及抗震設計規范給出了柱箍筋加密區的最小配箍特征值 ,為避免配箍率過小還規定了最小體積配箍率。鋼筋混凝土柱軸可以通過粘帖碳纖維來滿足《建筑抗震設計規范》(GB50011―2001)對箍筋加密區以及體積配箍率的構造要求,以提高其抗震性能。碳纖維的加固最主要課依據《建筑抗震設計規范》和《碳纖維片材加固修復混凝土結構技術規程》中(CECS146:2003)來確定。
碳纖維片材在箍筋加密區宜連續布置,且碳纖維片材兩端應搭接或采取可靠連續措施形成封閉箍。碳纖維片材條帶的搭接長度不應小于150mm,各條帶的搭接位置應相互錯開。
參考文獻:
[1] 文明才. 建筑結構加固技術及發展趨勢[J]. 湖南城市學院學報(自然科學版)[J]. 2005,14 (3):13-15.
論文摘要:建筑抗震設計對結構構件有明確的延性要求。軸壓比和剪跨比是影響構件延性的最主要的兩個因素,也是一對互成矛盾的因素。短柱的延性很差,尤其是超短柱幾乎沒有延性,在建筑遭受本地區設防烈度或高于本地區設防烈度的地震影響時,很容易發生剪切破壞而造成結構破壞甚至倒塌,無法滿足“中震可修,大震不倒”的設計準則。為了避免短柱脆性破壞問題在高層建筑中發生,筆者認為,首先要正確判定短柱,然后對短柱采取一些構造措施或處理,提高短柱的延性和抗震性能。
1 高層建筑抗震設計常見的問題
在高層建筑的建設中,其中最主要的問題是對它的抗震問題的研究,其中又以中短柱問題為最主要的問題?,F在首先介紹一下抗震設計中常見的一些問題。
1.1 缺乏巖土工程勘察資料或資料不全。有的在擴初設計階段還缺建筑場地巖土工程的勘察資料,有的在擴初設計會審之后就直接進入了施工圖設計,有的在規劃設計或方案設計會審后就直接進入了施工圖設計。無巖土工程勘察資料,設計缺少了必要的依據。
1.2 結構的平面布置。外形不規則、不對稱、凹凸變化尺度大、形心質心偏心大,同一結構單元內,結構平面形狀和剛度不均勻不對稱,平面長度過長等。
1.3 一個結構單元內采用兩種不同的結構受力體系。如一半采用砌體承重,而另一半或局部采用全框架承重或排架承重;底框磚房中一半為底框,而另一半為磚墻落地承重[這種情況常發現在平面縱軸與街道軸線相交的住宅,其底層為商店,設計成一半為底框磚房(有的為二層底框),而另一半為磚墻落地自承,造成平面剛度和豎向剛度二者都產生突變,對抗震十分不利]。
1.4 底框磚房超高超層。如1996年,對在杭設計單位作的一次專題普查,發現有69幢底框磚房超高超層。新項目亦普遍存在此現象,1999年某地塊住宅竣工交付使用驗收中發現有三幢底框磚房超高超層,甚至有超三層的。
1.5 抗震設防標準掌握不當。有一些項目擅自提高了設防標準,按照《建筑抗震設防分類標準(GB 50223-95)》劃分應屬六度設防的,但設計中提高了一度按七度設防,提高了建筑抗震設防標準,將會增加工程投資;有的項目嚴格應按七度采取抗震措施的,但設計中又按六度設防,減低了抗震設防標準,不利抗震。
1.6 結構的豎向布置。在高層建筑中,豎向體型有過大的外挑和內收,立面收進部分的尺寸比值B1/B不滿足≥0.75的要求。
1.7 抗震構造柱布置不當。如外墻轉角處,大廳四角未設構造柱或構造柱不成對設置;以構造柱代替磚墻承重;山墻與縱墻交接處不設抗震構造柱;過多設置抗震構造柱等。
1.8 框架結構砌體填充墻抗震構造措施不到位。砌體外圍護墻砌筑在框架柱外又沒有設置抗震構造柱,框架間砌體填充墻高度長度超過規范規定要求又沒有采取相應構造措施。
1.9 結構其他問題。有的底層無橫向落地抗震墻,全部為框支或落地墻間距超長;有的僅北側縱墻落地,南側全為柱子,造成南北剛度不均;有的底層作汽車庫,設計時橫墻都落地,但縱墻不落地,變成了縱向框支;還有的底框和內框砌體住宅采用大空間靈活隔斷設計,其中幾乎很少有縱墻。不少地方都采用鋼筋混凝土內柱來承重以代替磚墻承重,實際上將磚混結構演變為內框架結構,這比底框磚房還不利,因內框磚房的層數、總高度控制比底框磚房更嚴,因此存在著嚴重抗震隱患。更為嚴重的是這種情況并未引起目前大多數結構工程師的重視。
1.10 平面布局的剛度不均??拐鹪O計要求建筑的平、立面布置宜規正、對稱,建筑的質量分布和剛度變化宜均勻,否則應考慮其不利影響。但有的平面設計存在嚴重的不對稱:一邊進深大,一邊進深小;一邊設計大開間,一邊為小房間;一邊墻落地承重,一邊又為柱承重。平面形狀采用L、π形不規則平面等,造成了縱向剛度不均,而底層作為汽車庫的住宅,一側為進出車需要,取消全部外縱墻,另一側不需進出車輛,因而墻直接落地,造成橫向剛度不均。這些都對抗震極為不利。
1.11 防震縫設置。對于高層建筑存在下列三種情況時,宜設防震縫:①平面各項尺寸超過《鋼筋混凝土高層建筑結構設計與施工規程(JGJ 3-91)》中表2.2.3的限值而無加強措施;②房屋有較大錯層;③各部分結構的剛度或荷載相差懸殊而又未采取有效措施;但有的竟未采取任何抗震措施又未設防震縫。
1.12 結構抗震等級掌握不準。有的提高了,而有的又降低了,主要是對場地土類型、結構類型、建筑高度、設防烈度等因素綜合評定不準造成。
上述這些問題的存在,倘若不能得到改正,勢必對建筑物的安全帶來隱患。上述這些問題的存在,倘若不能得到改正,勢必對建筑物的安全帶來隱患。上述這些問題的原因是多方面的,有認識方面的原因有計劃經濟向市場經濟轉化過程中出現的原因,有設計人員忽視了抗震概念設計方面的原因(未能從整體、全局上把握好),有法律建設方面的原因(在工程抗震設防管理方面缺乏國家政府法律依據,特別是處罰方面),通過這些問題來研究中短柱的問題:
2 短柱的正確判定
柱凈高H與截面高度h之比H/h≤4為短柱,工程界許多工程技術人員也都據此來判定短柱,這是一個值得注意的問題。因為確定是不是短柱的參數是柱的剪跨比λ,只有剪跨比λ=M/Vh≤2的柱才是短柱,而柱凈高與截面高度之比H/h≤4的柱其剪跨比λ不一定小于2,亦即不一定是短柱。按H/h≤4來判定的主要依據是:①λ=M/Vh≤2;②考慮到框架柱反彎點大都靠近柱中點,取M=0.5VH,則λ=M/Vh=0.5VH/Vh=0.5H/h≤2,由此即得H/h≤4。但是,對于高層建筑,梁、柱線剛度比較小,特別是底部幾層,由于受柱底嵌固的影響且梁對柱的約束彎矩較小,反彎點的高度會比柱高的一半高得多,甚至不出現反彎點,此時不宜按H/h≤4來判定短柱,而應按短柱的力學定義——剪跨比λ=M/Vh≤2來判定才是正確的。
框架柱的反彎點不在柱中點時,柱子上、下端截面的彎矩值大小就不一樣,即Mt≠Mb。因此,框架柱上、下端截面的剪跨比大小也是不一樣的,即λt=Mt/Vh≠λb=Mb/Vh。此時,應采用哪一個截面的剪跨比來判斷框架柱是不是屬于短柱呢?筆者認為,應該采用框架柱上、下端截面中剪跨比的較大值,即取λ=max(λt,λb)。一般情況下,在高層建筑的底部幾層,框架柱的反彎點都偏上,即Mb>Mt。
在層高一定的情況下,為提高延性而降低軸壓比則會導致柱截面增大,且軸壓比越小截面越大;而截面增大導致剪跨比減小,又降低了構件的延性。因此,在高層特別是超高層建筑結構設計中,為滿足規程對軸壓比限值的要求,柱子的截面往往比較大,在結構底部常常形成短柱甚至超短柱。
3 改善短柱抗震性能的措施
當按剪跨比λ判定柱子不是短柱時,按一般框架柱的抗震要求采取構造措施即可;確定為短柱后,就應當盡量提高短柱的承載力,減小短柱的截面尺寸,采取各種有效措施提高短柱的延性,改善短柱的抗震性能。
3.1 使用復合螺旋箍筋 高層建筑框架柱的抗剪能力是應該滿足剪壓比限值和“強剪弱彎”要求的,柱端的抗彎承載力也是應該滿足“強柱弱梁”要求的。對于短柱,只要符合“強剪弱彎”和“強柱弱梁”的要求,是能夠做到使其不發生剪切型破壞的。因此,使用復合螺旋箍筋來提高柱子的抗剪承載力,改善對砼的約束作用,能夠達到改善短柱抗震性能的目的。